Math, asked by nishachinnu2005, 5 months ago

17. prove that
(sin A + COSA) (tanA+cotA)=sinA-cosecA

Answers

Answered by Ataraxia
36

Correct Question :-

Prove :-

\sf ( sinA+cosA)(tanA+cotA) = secA+cosecA

Solution :-

L.H.S = \sf (sinA+cosA)(tanA+cotA)

\bullet\bf \ tanA = \dfrac{sinA}{cosA}

\bullet\bf \  cotA= \dfrac{cosA}{sinA}

         = \sf (sinA+cosA) \left( \dfrac{sinA}{cosA} +\dfrac{cosA}{sinA} \right)

         = \sf (sinA+cosA) \left( \dfrac{sin^2A+cos^2A}{sinAcosA} \right)

\bullet \bf \ sin^2A+cos^2A = 1

         = \sf  (sinA+cosA) \times \left( \dfrac{1}{sinAcosA} \right)

         = \sf \dfrac{sinA}{sinAcosA} \times \dfrac{cosA}{sinAcosA}

         = \sf  \dfrac{1}{cosA}+\dfrac{1}{sinA}

\bullet \bf \ secA= \dfrac{1}{cosA}

\bullet \bf \ cosecA= \dfrac{1}{sinA}

         = \sf secA+cosecA

         = R.H.S

Hence proved.

Answered by NewGeneEinstein
7

Step-by-step explanation:

To prove:-

\\\qquad\qquad\sf{:}\dashrightarrow (sinA+cosA)(tanA+cotA)=sinA+cosecA

Proof:-

LHS:-

\\\qquad\qquad\sf{:}\dashrightarrow (sinA+cosA)(tanA+cotA)

\\\qquad\qquad\sf{:}\dashrightarrow (sinA+cosA)(\dfrac {sinA}{cosA}+\dfrac {cosA}{sinA})

\\\qquad\qquad\sf{:}\dashrightarrow (sinA+cosA)(\dfrac{sin^2A+cos^2A}{sinA.cosA})

\\\qquad\qquad\sf{:}\dashrightarrow (sinA+cosA)(\dfrac {1}{sinAcosA})

\\\qquad\qquad\sf{:}\dashrightarrow \dfrac {sinA}{sinAcosA}\times \dfrac {cosA}{sinAcosA}

\\\qquad\qquad\sf{:}\dashrightarrow \dfrac {1}{cosA}+\dfrac {1}{sinA}

\\\qquad\qquad\sf{:}\dashrightarrow secA+cosecA

\\\qquad\qquad\sf{:}\dashrightarrow RHS

\\\therefore\sf LHS=RHS\quad {}_{(proved)}

Similar questions