Math, asked by kodimanikanta13, 6 hours ago

17. Show that sin A + sin (120° + A) + sin (120° - A) = 0.​

Answers

Answered by mdobadah789
1

Answer:

math]\sin\, \alpha +\sin\,\beta = 2 \sin \dfrac{\alpha + \beta}{2} \cos\dfrac{\alpha - \beta}{2}[/math]

[math]\implies \sin\,A + \sin (120^\circ + A) + \sin (A - 120^\circ)[/math]

[math]= \sin\,A + 2 \sin \dfrac{(120^\circ + A + A - 120^\circ)}{2}\cos \dfrac{\{120^\circ + A - (A - 120^\circ)\}}{2}[/math]

[math]= \sin\,A + 2 \sin\,A \cos\,120^\circ[/math]

[math]= \sin\,A + 2 \sin\,A\left( \dfrac{-1}{2}\right)[/math]

[math]= \sin\,A - \sin\,A = 0[/math]

Step-by-step explanation:

plz Mark me brainliest

Answered by AlexTheNerd
0

Answer:

sin A−sin A = 0

Step-by-step explanation:

sin a +sin β =2sin \frac{a+b}{2} cos \frac{a-b}{2}

sin A  + sin(120^ o+A) +sin(A-120^o)

=sin A+2sin\frac{120^o + A + A - 120^o}{2}cos(120^o + A - A (A - 120^o))

=sin A + 2 sin A cos 120^o

=sin A+2 sin A (\frac{-1}{2})

=sin A−sin A=0

Similar questions