17. Show that sin A + sin (120° + A) + sin (120° - A) = 0.
Answers
Answered by
1
Answer:
math]\sin\, \alpha +\sin\,\beta = 2 \sin \dfrac{\alpha + \beta}{2} \cos\dfrac{\alpha - \beta}{2}[/math]
[math]\implies \sin\,A + \sin (120^\circ + A) + \sin (A - 120^\circ)[/math]
[math]= \sin\,A + 2 \sin \dfrac{(120^\circ + A + A - 120^\circ)}{2}\cos \dfrac{\{120^\circ + A - (A - 120^\circ)\}}{2}[/math]
[math]= \sin\,A + 2 \sin\,A \cos\,120^\circ[/math]
[math]= \sin\,A + 2 \sin\,A\left( \dfrac{-1}{2}\right)[/math]
[math]= \sin\,A - \sin\,A = 0[/math]
Step-by-step explanation:
plz Mark me brainliest
Answered by
0
Answer:
sin −sin
Step-by-step explanation:
sin +sin β =2sin cos
sin sin +sin
=sin +2sincos
=sin sin A cos
=sin +2 sin A
=sin −sin A=0
Similar questions