Math, asked by lalithapb021, 1 month ago

17) Solve x ^ 2 - 7x + 12 = 0 by using quadratic formula.​

Answers

Answered by cvayush
0

Step-by-step explanation:

 {x}^{2}   - 7x + 12 = 0 \\ \:  \large \sf \blue{ (using \: quadratic \: formula)} \\  {x}^{2}  - 4x - 3x + 12 = 0 \\ x(x - 4)    -   3(x - 4 )  = 0\\ (x - 3)(x - 4) = 0 \\  \\  \large \sf \blue{x = 4 \: or \:x =  3}

Answered by Anonymous
43

____________________________________________________. ★ ___________. ★

\sf\small\red{Given:-}

\sf\rightarrow \:  {x}^{2}  - 7x + 12 = 0

\sf\small\red{Find:-}

\sf\rightarrow \: solving \: the \: quadratic \: equation.

\sf\small\red{formula:-}

\sf\rightarrow \:  {ax}^{2}  + bx + c = 0

\sf\small\red{Solution:-}

\sf  \mapsto\: x =  \frac{ - b \pm \:   \sqrt{ {b}^{2} } - 4ac }{2a}

We have,

a = 1.

b = -7.

c = 12.

\sf\mapsto \: x =  \frac{ - ( - 7) \pm \:   {( - 7)}^{2}   - 4 \: .1. \: 12}{2.1}

\sf\mapsto \:  \frac{7 \pm \:  \sqrt{49 - 48} }{2}

\sf\mapsto \:  \frac{7 \pm \:  \sqrt{1} }{2}

\sf\mapsto \:  \frac{7 \pm \: 1}{2}

i.e,

 \sf\Rightarrow  \: x = 4 \: or \: 3.

Similar questions