Math, asked by divyank12, 10 months ago

17. The area of an isosceles right angled triangle with 12 cm as its equal sides is​

Answers

Answered by prince5132
15

GIVEN :-

  • Equal sides of isosceles triangle are 12 cm each .

  • Triangle is Right angled Triangle

TO FIND :-

  • Area of triangle.

SOLUTION :-

\setlength{\unitlength}{20} \begin{picture}( 0 , 0 ) \put( 1 , 1){ \line( 0 , 1){4}}\put( 1 , 1){ \line( 1 , 0){4}}\put( 5 , 1){ \line( 0 , 1){0}}\put( 1 , 5){ \line( 1 ,  - 1){4}} \put(1.2 ,3){ \line( - 1 , 0){0.5}}\put(2.5 ,0.8){ \line( 0 , 1){0.5}}\put(1.5 ,1.5){ \line( - 1 , 0){0.5}}\put(1.5 ,0.98){ \line( 0 ,2){0.5}}\put(2, 0.5){$ \bf{</u><u>12</u><u> \:  \: cm}$}\put( - 1, 3){$ \bf{</u><u>12</u><u> \:  \: cm}$}\put(1, 5){$ \bf{A}$}\put(1, 0.5){$ \bf{B}$}\put(5, 0.5){$ \bf{C}$}\end{picture}

▪︎Area of triangle = 1/2( base × height)

= 1/2 (12 cm × 12 cm)

= 1/2(144 cm²)

= 1/2 × 144 cm²

= 72 cm²

Hence Area of isosceles right angle triangle is 72 cm²

ADDITIONAL INFORMATION :-

▪︎Area of triangle = 1/2(base × height)

▪︎Area of equilateral triangle = (√3a²/4)

▪︎properties of triangle:-

  • Angle sum property of triangle
  • Exterior angle property
  • Interior angle property
Answered by Anonymous
8

Given ,

The side of isosceles right angled triangle is 12 cm

We know that , the area of right angled triangle is given by

 \large \sf \star \:  \:  \fbox{Area =  \frac{1}{2}  \times base  \times height}

Thus ,

 \sf \mapsto Area =  \frac{1}{2}  \times 12 \times 12 \\  \\\sf \mapsto Area =   \frac{144}{2}  \\  \\\sf \mapsto Area =   72 \:  \:  {cm}^{2}

 \therefore \sf \underline{The \:  area \:  of  \: isosceles \:  right \:  angled  \: triangle \:  is \:  72 \:  {cm}^{2} }

Similar questions