Math, asked by viwoto1051, 9 months ago

17. The ratio of the total surface area to the lateral surface area of a cylinder with
base radius 80 cm and height 20 cm is​

Answers

Answered by sethrollins13
52

Given :

  • Radius of Cylinder = 80cm.
  • Height of Cylinder = 20cm.

To Find :

  • Ratio of the Total Surface Area to the Lateral Surface Area of Cylinder.

Solution :

\longmapsto\tt{C.S.A\:of\:Cylinder=2\pi{rh}}

\longmapsto\tt{T.SA\:of\:Cylinder=2\pi{r(r+h)}}

Now ,

\longmapsto\tt{\dfrac{T.S.A}{C.S.A}=\dfrac{{\cancel{2\pi{r}}h}}{{\cancel{2\pi{r}}(r+h)}}}

\longmapsto\tt{\dfrac{r+h}{h}}

\longmapsto\tt{\dfrac{80+20}{20}}

\longmapsto\tt{\cancel\dfrac{100}{20}}

\longmapsto\tt{\dfrac{5}{1}}

\longmapsto\tt\bold{5:1}

Therefore , The Ratio of T.S.A to C.S.A of Cylinder is 5:1 ..

Answered by shikha2019
0

Step-by-step explanation:

C.S.AofCylinder=2πrh

\longmapsto\tt{T.SA\:of\:Cylinder=2\pi{r(r+h)}}⟼T.SAofCylinder=2πr(r+h)

Now ,

\longmapsto\tt{\dfrac{T.S.A}{C.S.A}=\dfrac{{\cancel{2\pi{r}}h}}{{\cancel{2\pi{r}}(r+h)}}}⟼

C.S.A

T.S.A

=

2πr

(r+h)

2πr

h

\longmapsto\tt{\dfrac{r+h}{h}}⟼

h

r+h

\longmapsto\tt{\dfrac{80+20}{20}}⟼

20

80+20

\longmapsto\tt{\cancel\dfrac{100}{20}}⟼

20

100

\longmapsto\tt{\dfrac{5}{1}}⟼

1

5

\longmapsto\tt\bold{5:1}⟼5:1

Therefore , The Ratio of T.S.A to C.S.A of Cylinder is 5:1

Similar questions