17. When √2z+1+ √3z+4 = 7 the value of z is given by
Answers
Step-by-step explanation:
(2z+1)1/2 + (3z+4)1/2 = 7
Square both sides
[(2z+1)1/2 + (3z+4)1/2]2 = 72
Remember: (a+b)2 = a2 + 2ab + b2
a = 2z+1 ... b = 3z+4
and
(√a)(√b) = √(ab)
2z+1 + 2[(2z+1)(3z+4)]1/2 + 3z + 4 = 49
5z + 5 + 2(6z2 + 11z + 4)1/2 = 49
2(6z2 + 11z + 4)1/2 = 44 - 5z
square both sides
4(6z2 + 11 + 4) = (44-5z)2
24z2 + 44z + 16 = 1936 - 440z + 25z2
Move everything to right side
z2 - 484z + 1920 = 0
We now have a quadratic equation we can use the quadratic formula on
z = [484 ±√((-484)2-4(1)(1920))]/2(1)
z = (484 ±√226576)/2
z = (484 ± 476)/2
z = 8/2 = 4 or z = 960/2 = 480
Step-by-step explanation:
hey mate here is your answer:
(√2z+1+√3z+4) = 7
(√2z+√3z+5) = 7
z(√2+√3)=7-5
z(√2+√3)= 2
.:squaring on both sides.
[z(√2+√3)]^2 = 2^2
z^2(2+3+2√6)=4