Math, asked by krrish93, 1 year ago

17and 18 please help me to do this

Attachments:

Answers

Answered by Mankuthemonkey01
5
17) Let the number be x

=> 20% increase =

 (\frac{20}{100}  \times x )+ x \\  \\  =  >  \frac{x}{5}  + x \\  \\  =  >  \frac{x}{5}  +  \frac{5x}{5}  \\  \\  =  >  \frac{6x}{5}

Now it is decreased by 20%

=>
 \frac{6x}{5} -  ( \frac{20}{100}  \times  \frac{6x}{5} ) \\  \\  =  >  \frac{6x}{5}  -  \frac{6x}{25}  \\  \\  =  >  \frac{30x}{25}  -  \frac{6x}{25}  \\  \\  =  >  \frac{24x}{25}

Since,

x > 24x/25

The percentage here is overall decreased

Percent decreased =
 (x - \frac{24x}{25})  \div x \times 100 \\  \\  =  >  ( \frac{25x}{25} -  \frac{24x}{25} ) \times  \frac{1}{x}  \times 100 \\  \\  =  >  \frac{x}{25}  \times  \frac{1}{x}  \times 100 \\ \\   =  > 4\%


So overall decreased = 4%


18) Again, let the number be x

So 40% decreased

=
x - ( \frac{40}{100}  \times x) \\  \\  =  > x -  \frac{2x}{5}  \\  \\  =  >  \frac{5x}{5}  -  \frac{2x}{5}  \\  \\  =  >  \frac{3x}{5}

Now again 60% decreased

=>
 \frac{3x}{5}  - ( \frac{60}{100}  \times  \frac{3x}{5} ) \\  \\  =  >  \frac{3x}{5}  -  \frac{9x}{25}  \\  \\  =  >  \frac{15x}{25}  -  \frac{9x}{25}  \\  \\  =  >  \frac{6x}{25}


since, x > 6x/25 Their is a decrease

so percentage decreased =
(x -  \frac{6x}{25} ) \div x \times 100 \\  \\  =  > ( \frac{25x}{25}  -  \frac{6x}{25} ) \times  \frac{1}{x}  \times 100 \\  \\  =  >  \frac{19x}{25}  \times  \frac{1}{x}  \times 100 \\  \\  =  > 76\%


Your answer = 76% decreased
Similar questions