Math, asked by sukhman60, 7 months ago

18.1) Find the real and imaginary part:
1+7i/(2-i)²​

Answers

Answered by 92550
1

Answer:

hope it will help.........

Attachments:
Answered by SheerinFarhana
2

Answer:

Real part, a = - 1

Imaginary part, ib = i

Step-by-step explanation:

\frac{1 + 7i}{(2 - i) {}^{2} }  =   \frac{1 + 7i}{2 {}^{2}  + i {}^{2} - 2(2)(i) }   \\  =  \frac{1 + 7i}{4 + ( - 1) - 4i}  \\  =  \frac{1 + 7i}{3 - 4i}  \\  =  \frac{(1 + 7i)(3 + 4i)}{(3  -4i)(3 + 4i)}  \\  = \frac{ (1)(3 + 4i) + 7i(3 + 4i)}{(3) {}^{2}  - (4i) {}^{2} }  \\  =  \frac{3 + 4 i+ 7i(3) + 7i(4i)}{9 - 16i {}^{2} }  \\  =  \frac{3 + 4i + 21i + 28(i) {}^{2} }{9 - 16( - 1)}  \\  =  \frac{3 + 25i + 28( - 1)}{9 + 16}  \\  =  \frac{3 + 25i - 28}{25}  \\  =  \frac{ 25i - 25}{25}  \\  =  \frac{25(i - 1)}{25}  \\  = (i - 1)

If a+ib = - 1 + i

Then

  • a = - 1
  • ib = i
Similar questions