Math, asked by samratsk57666, 5 days ago

18-3y/4 = 11+ y please help me with this sum .​

Answers

Answered by steffiaspinno
0

The roots are \alpha =\frac{9+i\sqrt{51} }{3} and \beta =\frac{9-i\sqrt{51} }{3}

Explanation:

Given:

\frac{18-3y}{4}=\frac{11}{y}

To find:

The value of y

Formula:

\alpha =\frac{-b+\sqrt{b^{2}-4ac } }{2a}

\beta =\frac{-b-\sqrt{b^{2}-4ac } }{2a}

Solution:

==> \frac{18-3y}{4}=\frac{11}{y}

==> 18-3y=\frac{4\times11}{y}

==> y(18-3y)=4\times11

==> 18y-3y^{2}=44

==> 18y-3y^{2}-44=0

==> Multiply by - on both sides

==> -18y+3y^{2}+44=0

==> 3y^{2}-18y+44=0

==> a = coeffcient of y²

==> b = coeffcient of y

==> c = Constant

==> a = 3

==> b = -18

==> c = 44

==> Substitute the values in the formula

==> \alpha =\frac{-(-18)+\sqrt{(-18)^{2}-4(3)(44) } }{2(3)}

==>  \alpha =\frac{18+\sqrt{(324-12(44) } }{6}

==> \alpha =\frac{18+\sqrt{(324-528 } }{6}

==> \alpha =\frac{18+\sqrt{-204 } }{6}

==> we know that, i² = -1

==> \alpha =\frac{18+\sqrt{-1\times 204 } }{6}

==> \alpha =\frac{18+\sqrt{-1\times 2\times2\times3\times17} }{6}

==> \alpha =\frac{18+\sqrt{i^{2} \times 2\times2\times3\times17} }{6}

==> \alpha =\frac{18+2i\sqrt{51} }{6}

==> \alpha =\frac{2(9+i\sqrt{51)} }{6}

==> \alpha =\frac{9+i\sqrt{51} }{3}

==> \beta =\frac{-(-18)-\sqrt{(-18)^{2}-4(3)(44) } }{2(3)}

==>  \beta =\frac{18-\sqrt{(324-12(44) } }{6}

==> \beta =\frac{18-\sqrt{(324-528 } }{6}

==> \beta =\frac{18-\sqrt{-204 } }{6}

==> we know that, i² = -1

==> \beta =\frac{18-\sqrt{-1\times 204 } }{6}

==> \beta =\frac{18-\sqrt{-1\times 2\times2\times3\times17} }{6}

==> \beta =\frac{18-\sqrt{i^{2} \times 2\times2\times3\times17} }{6}

==> \beta =\frac{18-2i\sqrt{51} }{6}

==> \beta =\frac{2(9-i\sqrt{51)} }{6}

==> \beta =\frac{9-i\sqrt{51} }{3}

The roots are \alpha =\frac{9+i\sqrt{51} }{3} and \beta =\frac{9-i\sqrt{51} }{3}

Similar questions