Math, asked by giigt47612, 5 months ago

18. (a) Find A and B if sin (A - B)
1
2
cos(A + B) and A, B are acute angles.
3
(b) Find A and B if cos(A - B)
= sin(A + B) and A, B are acute angles whose sum is acute.
2​

Answers

Answered by ᏞovingHeart
103

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

 \sf{sin(A+B)=cos(A-B) =  \sqrt{\frac{3}{2}}} \\  \sf{∴ \: sin(A+B)=\sqrt{\frac{3}{2}}}  \\  \sf{or, sin(A+B)=sin60°} \\  \sf{or, A+B=60° ----(1)} \\  \sf{cos(A-B)=\sqrt{\frac{3}{2}}}  \\  \sf{or, cos(A-B)=cos30°} \\  \sf{or, A-B=30° -----(2)} \\  \sf{Adding (1) and (2) we get,} \\  \sf{2A=90°} \\  \sf{or, A=45°} \\  \sf{Putting \:  in \:  (1) \:  we \:  get, } \\  \sf{45°+B=60°} \\  \sf{or, B=15°} \\  \sf{∴, A=45°, B=15°}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions