Physics, asked by sejal767, 1 year ago

18. A particle has initial velocity (2+4j) m/s and
retardation (4i +8j) m/s2. The distance travelled
by particle from t = 0 to t = 1 s is
(1) 15 m
(2) T6 m
(3) V7 m
(4) data insufficient​

Answers

Answered by BrainIyMSDhoni
13

We have

a_{x} =  - 4 \\ a_{y} =  - 7 \\ u_{x}  = 2 \\ u_{y} = 4 \\ v_{x} = 2 - 4 \\ v_{y} = 4 - 8t

According To Question

Both \: v_{x} \: and \: v_{y} \: are \: 0 \: at \: t =  \frac{1}{2} s

After this particle returns to initial point

S_{x} \: at \: t =  \frac{1}{2} s \\ S_{x}  =  2 \times  \frac{1}{2}  -  \frac{1}{2}  \times 4 \times  \frac{1}{4}  \\ S_{x}  =  \frac{ \cancel2}{ \cancel2}  -  \frac{1}{2}  \times  \frac{ \cancel4}{ \cancel4}  \\ S_{x}  = 1 -  \frac{1}{2}  \\  \boxed{S_{x}  =  \frac{1}{2} }

 \bold{S_{y} \: at \: t =  \frac{1}{2}s } \\ S_{y}  = 4 \times  \frac{1}{2}  -  \frac{1}{2}  \times 8 \times  \frac{1}{4}  \\ S_{y}  =  \frac{ \cancel4}{ \cancel2}  -  \frac{ \cancel8}{ \cancel8} \\ S_{y}  = 2 - 1 \\  \boxed{S_{y}  = 1}

Distance Travelled, D

D = 2 \times  \sqrt{ {S_{x}}^{2} +  {S_{y}}^{2}  }  \\ D = 2 \sqrt{ \frac{1}{4} + 1 }  \\ D = 2 \sqrt{ \frac{5}{4} }  \\ D =  \frac{ \cancel2}{ \cancel2}   \sqrt{5}  \\ D =  \sqrt{5}

Answered by kuswahaaaditya33
4

Answer:

4. is the correct answer

Similar questions