Math, asked by sunilsrivastava79, 6 months ago

18.) A solid of mass 2 kg moving with
velocity 10 m/s strikes an ideal weightless spring and
produces a compression of 25 cm in it. Calculate the
force-constant of the spring.
Ans. 3200 N/m.
ck of mass 980 8​

Answers

Answered by BrainlyConqueror0901
92

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Value\:of\:k=3200\:N/m}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline{\bold{Given:}}} \\  \tt:  \implies Mass \: of  \: solid (m)= 2 \: kg \\  \\ \tt:  \implies Velocity \: of \: solid(v) = 10 \: m/s \\  \\ \tt:  \implies Compression \: in \: spring(x) = 25 \: cm \\  \\   \red{\underline{\bold{To \: Find:}}} \\  \tt:  \implies Spring \: constant(k) =?

• According to given question :

 \green{ \tt \circ} \: x =  \frac{25}{100}  = 0.25 \: m \\  \\  \bold{As \: we \: know \: that} \\  \tt:  \implies  \frac{1}{2}  {kx}^{2}  =  \frac{1}{2}  {mv}^{2}  \\  \\ \tt:  \implies k \times  ({0.25)}^{2}  = 2 \times {10}^{2}  \\  \\ \tt:  \implies k \times 0.0625 = 2 \times 100 \\  \\ \tt:  \implies k =  \frac{200}{0.0625}  \\  \\ \tt:  \implies k =  \frac{2000000}{625}   \\   \\  \green{\tt:  \implies k = 3200 \: N/m} \\  \\  \green{ \tt \therefore Spring \: constant \: is \: 3200 \: N/m}

Answered by Qᴜɪɴɴ
52

Given:

  • Mass = m= 2kg
  • Velocity = v = 10m/s
  • Compression = x = 25cm = 0.25m

━━━━━━━━━━━━━━━━━━

Need to find:

  • The spring constant = k =?

━━━━━━━━━━━━━━━━━━

Solution:

We know,

The Compression in spring = Change in its KE

Taking initial velocity as 0m/s,

━━━━━━━━━━━━━━━

 \dfrac{1}{2} \: k {x}^{2}   =  \dfrac{1}{2} m \: ( {v}^{2}  -  {u}^{2} )

Substituting the values,

 \implies \:  \dfrac{1}{2}  k \times .25 \times .25 =  \dfrac{1}{2}  \times 2  ( {10}^{2}  -  {0}^{2} )

 \implies \: k \times 0.0625 = 2 \times 100

 \implies \: k =  \dfrac{2 \times 100}{0.0625}

 \implies \: k =  \dfrac{2 \times 1000000}{625}

\red{\bold{\large{\boxed {\implies \: k =  3200 N/m}}}}

Similar questions