Math, asked by AnuShakya, 11 months ago

18. A two digit number is obtained by either multiplying sum of digits by 8 and adding 1 or multiplying the difference of digits by 13 and adding 2. Find the number.

Answers

Answered by harman1238
1

Answer:

hope this will help you

Attachments:
Answered by silentlover45
2

\underline\mathfrak{Given:-}

  • The \: \: two \: \: number \: \: is \: \: obtained \: \: by \: \: either \: \: multiplying \\ sum \: \: of \: \: digits \: \: by \: \: {8} \: \: and \: \: adding \: \: {1}.

  • By \: \: multiplying \: \: the \: \: difference \: \: of \\ the  \: \: digits \: \: by \: \: {13} \: \: and \: \: adding \: \: {2}.

\underline\mathfrak{To \: \: Find:-}

  • \: \: \: \: \: Fine \: \: the \: \: of \: \: number?

\underline\mathfrak{Solutions:-}

\: \: \: \: \: \: \: Let \: \: the \: \: ten's \: \: place \: \: digits \: rupees \: \: be \: \: x

  • \: \: \: \: \: \: \: Let \: \: the \: \: unit's \: \: place \: \: digits \: rupees \: \: be \: \: y

\: \: \: \: \: \therefore Number \: \: \leadsto \: \: {10x} \: + \: {y}

  • \: \: \: \: \: number \: \: is \: \: obtained \: \: by \: \: either \: \: multiplying \\ sum \: \: of \: \: digits \: \: by \: \: {8} \: \: and \: \: adding \: \: {1}

\: \: \: \: \: \leadsto {10x} \: + \: {y} \: \: = \: \: {8}{(x \: + \: y)} \: + \: {1}

\: \: \: \: \: \leadsto {10x} \: + \: {y} \: \: = \: \: {8x} \: + \: {8y} \: + \: {1}

\: \: \: \: \: \leadsto {10x} \: - \: {8x} \: + \: {y} \: - \: {8x} \: \: = \:  \: {1}

\: \: \: \: \: \leadsto {2x} \: - \: {7y} \: \: = \:  \: {1} \: \: \: \: \: \: \: ....{(1)}.

  • \: \: \: \: \: By \: \: multiplying \: \: the \: \: difference \: \: of \\ the  \: \: digits \: \: by \: \: {13} \: \: and \: \: adding \: \: {2}.

\: \: \: \: \: \leadsto {10x} \: + \: {y} \: \: = \: \: {13}{(x \: - \: y)} \: + \: {2}

\: \: \: \: \: \leadsto {10x} \: + \: {y} \: \: = \: \: {13x} \: - \: {13y} \: + \: {2}

\: \: \: \: \: \leadsto {10x} \: - \: {13x} \: + \: {y} \: + \: {13y} \: \: = \:  \: {2}

\: \: \: \: \: \leadsto {-3x} \: + \: {14y} \: \: = \:  \: {2}

\: \: \: \: \: \leadsto {3x} \: - \: {14y} \: \: = \:  \: {-2} \: \: \: \: \: \: \: ....{(2)}.

  • \: \: \: \: \: Multiplying \: \: Eq. \: \: {(1)} \: \: by \: \: {2}.

\: \: \: \: \: \leadsto {({2x} \: - \: {7y} \: \: = \:  \: {1})} \: \: \: \times  \: \: {2}.

\: \: \: \: \: \leadsto {4x} \: - \: {14y} \: \: = \:  \: {2} \: \: \: \: \: \: \: ....{(3)}.

\: \: \: \: \: From \: \: Eq \: \: {(2)} \: \: and \: \: Eq. \: {(3)}.

{4x} \: - \: {14y} \: \: = \:  \: {2} \\ {3x} \: - \: {14y} \: \: = \:  \: {-2} \\ \underline{ - \: \: \: \: \: \: \: \: \: + \: \: \: \: \: \: = \: \: \: + \: \: \: \: } \\  x \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: = \: \: {4}

  • \: \: \: \: \: Now, \: \: putting \: \: value \: \: of \: \: x \: \: in \: \: Eq. \: \: {(2)}.

\: \: \: \: \: \leadsto {3x} \: - \: {14y} \: \: = \:  \: {-2}

\: \: \: \: \: \leadsto {3} \: \times \: {4} \: - \: {14y} \: \: = \:  \: {-2}

\: \: \: \: \: \leadsto {12} \: - \: {14y} \: \: = \:  \: {-2}

\: \: \: \: \: \leadsto {12} \: + \: {2} \: \: = \:  \: {14y}

\: \: \: \: \: \leadsto {14} \: \: = \:  \: {14y}

\: \: \: \: \: \leadsto {y} \: \: = \:  \: \frac{14}{14}

\: \: \: \: \: \leadsto {y} \: \: = \:  \: {1}

  • \: \: \: \: \: So, \: \: the \: \: number \: \: {({10y} \: + \: {1})}

\: \: \: \: \: \leadsto {10y} \: \times \: {4} \: + \: {1}

\: \: \: \: \: \leadsto {40} \: + \: {1}

\: \: \: \: \: \leadsto {41}

\: \: \: \: \: So, \: \: the \: \: number \: \: is \: \: {41}

__________________________________

Similar questions