Math, asked by chirayubedekar28, 11 months ago

18. (cotA – cosecA)2 = 1 – cosA/ 1 + cosA

Answers

Answered by rishu6845
4

\bold{ \large{ \underline{ \red{To \: prove}}}} \longrightarrow \\  {(cot  \alpha  - cosec \alpha )}^{2}  =  \dfrac{1 - cos \alpha }{1 + cos \alpha }  \\ \bold{ \large{ \underline{ \red{ Concept \: used}}}} \longrightarrow \\  \boxed{  \pink{{sin}^{2}  \theta = 1 -  {cos}^{2}  \theta}} \\  \boxed{ \pink{{x}^{2}  -  {y}^{2}  = (x + y) \: (x - y)}}

 \bold{ \large{ \underline{ \red{Proof}}}} \longrightarrow \: LHS \\  =  {( \: cot \alpha  - cosec \alpha \:  )}^{2}  \\  =  {( \:  \dfrac{cos \alpha }{sin \alpha } -  \dfrac{1}{sin \alpha } \: )  }^{2}  \\  =  {( \:  \dfrac{cos \alpha  - 1}{sin \alpha } \:  )}^{2}  \\  =  {( \:  -  \dfrac{1 - cos \alpha }{sin \alpha }  \: )}^{2}  \\  =  \dfrac{ {(1 - cos \alpha )}^{2} }{ {sin}^{2} \alpha  }  \\  =  \dfrac{ {(1 - cos \alpha )}^{2} }{1 -  {cos}^{2} \alpha  }  \\  =  \dfrac{ {(1 - cos \alpha )}^{2} }{ {(1)}^{2}  -  {(cos} \alpha ) ^{2}  }   \\ =  \dfrac{ {(1 - cos \alpha )}^{2}  }{(1 + cos \alpha ) \: (1 - cos \alpha )}  \\ (1 - cos \alpha )  \: is \: cancel \: out \: from \: nuerator \: and \: denominator \\  =  \dfrac{1 - cos \alpha }{1 + cos \alpha }  \\  = RHS

Similar questions