Math, asked by chirayubedekar28, 10 months ago

18. (cotA – cosecA)2 = 1 – cosA/1 + cosA

Answers

Answered by Anonymous
2

Refer to above attachment

\rule{200}2

→Trigonometric Identities:

sin2A + cos2A = 1

tan2A + 1 = sec2A

cot2A + 1 = cosec2A

→Relation Between Trigonometric Identities:

• tanA = sinA/cosA

• cotA = cosA/sinA

• cosecA = 1/sinA

• secA = 1/cosA

\rule{200}2

Attachments:
Answered by FIREBIRD
2

Step-by-step explanation:

We Have :-

( \cot(a)  -  \csc(a) )^{2}  =  \dfrac{1 -  \cos(a) }{1 +  \cos(a) }

Identities Used :-

 \cot(a)  =  \dfrac{ \cos(a) }{ \sin(a) }  \\  \\  \\  \csc(a)  =  \dfrac{1}{ \sin(a) }  \\  \\  \\ a^{2}  - b^{2}  = (a + b)(a - b) \\  \\  \\  \sin^{2} (a)  = 1 -  \cos^{2} (a)

Solution :-

( \cot(a)  -  \csc(a) )^{2}  =  \dfrac{1 -  \cos(a) }{1 +  \cos(a) }  \\  \\  \\ ( \cot(a)  -  \csc(a) )^{2}  \\  \\  \\ ( \dfrac{ \cos(a) }{ \sin(a) }  -  \dfrac{1}{ \sin^{2} (a) } )^{2}  \\  \\  \\ ( \dfrac{ \cos(a) - 1 }{ \sin(a) }  )^{2}  \\  \\  \\  \dfrac{ (\cos(a) - 1)^{2}  }{ \sin ^{2} (a) }   \\  \\  \\ \dfrac{ (\cos(a) - 1)( \cos(a)    - 1)}{ 1 -  \cos^{2} (a) } \\  \\  \\ \dfrac{ (\cos(a) - 1)( \cos(a)    - 1)}{ (1 -  \cos (a) )(1 -  \cos(a)) }  \\  \\  \\  \dfrac{1 -  \cos(a) }{1 +  \cos(a) }

Similar questions