Math, asked by ajeetkumar5000a, 7 months ago

18. Divide 20 into four parts which are in A. P. such that the product of
the first and fourth is to the product of the second and third is 2:3.
Type IV.​

Answers

Answered by archisoni9825
0

Answer:

Let the four parts be a – 3d, a – d, a + d and a +3d

Hence (a – 3d) + (a – d) + (a + d) + (a +3d) = 20

⇒ 4a = 20

∴ a = 5

It is also given that (a – 3d)(a + 3d) : (a – d)(a + d) = 2 : 3

⇒ (a2 – 9d2) : (a2 – d2) = 2 : 3

 

⇒ 3(a2 – 9d2) = 2(a2 – d2)

⇒ 3a2 – 27d2 = 2a2 – 2d2

⇒ 3a2 – 2a2 = 27d2 – 2d2

⇒ a2 = 25d2

⇒ 52 = 25d2

⇒ 25 = 25d2

⇒ d2 = 1

∴ d = ± 1

Case (i): If d = 1

Hence (a – 3d) = (5 – 3) = 2

(a – d) = (5 – 1) = 4

(a + d) = (5 + 1) = 6

(a + 3d) = (5 + 3) = 8

Hence the four numbers are 2, 4, 6 and 8.

Case (ii): If d = –1

Hence (a – 3d) = (5 + 3) = 8

(a – d) = (5 + 1) = 6

(a + d) = (5 – 1) = 4

(a + 3d) = (5 – 3) = 2

Hence the four numbers are 8, 6, 4

hope you like it mark as brainliest

Similar questions