18. Domain of f(x) =
3-lx
is
V1x1-7
Attachments:
Answers
Answered by
8
EXPLANATION.
As we know that,
From denominator never be = 0.
⇒ |x| - 7 ≠ 0.
⇒ |x| ≠ 7.
⇒ x ≠ +7, -7.
Case = 1.
⇒ For x ≥ 0.
⇒ 3 - x/x - 7 ≥ 0.
⇒ x - 3/x - 7 ≤ 0.
Find zeroes of the equation, we get.
⇒ x - 3 = 0.
⇒ x = 3. - - - - - (1).
⇒ x - 7 = 0.
⇒ x = 7. - - - - - (2).
Put the value in the wavy curve method, we get.
⇒ x ∈ [3,7). - - - - - (a).
Case = 2.
⇒ For x ≤ 0.
⇒ 3 - (-x)/(-x) - 7 ≤ 0.
⇒ 3 + x/-x - 7 ≤ 0.
⇒ x + 3/x + 7 ≤ 0.
Find Zeroes of the equation, we get.
⇒ x + 3 = 0.
⇒ x = - 3. - - - - - (1).
⇒ x + 7 = 0.
⇒ x = - 7. - - - - - (2).
Put this point on the wavy curve method, we get.
⇒ x ∈ [-3,-7). - - - - - (b).
Take union of equation (a) ∪ (b), we get.
⇒ x ∈ [-3,-7) ∪ [3,7).
Similar questions