Math, asked by ashvinijadhav20290, 4 months ago

18. एका समभुज चौकोनाचे कर्ण 24 सेमी व 32 सेमी लांबीचे आहेत, तर त्या समभुज चौकोनाची परिमिती किती?

Answers

Answered by kk3503868
4

Answer:

उद्देश्य

समभुज चौकोनाचे क्षेत्रफळ त्याच्या कर्णांच्या गुणाकाराच्या निम्मे असते हे दाखविणे.

सिद्धांत

समभुज चौकोन हा साधा (स्वतःस न छेदणारा) चौकोन असतो ज्याच्या चारही बाजू समान लांबीच्या असतात.

समांतरभुज चौकोनाच्या शेजारील दोन बाजू एकरुप असतील तर तो समभुज चौकोन असतो.

जर दोन त्रिकोण एकरुप असतील तर त्यांची क्षेत्रफळे समान असतात.

त्रिकोणाचे क्षेत्रफळ = 1/2 X पाया X उंची

आयताचे क्षेत्रफळ = लांबी X रुंदी

पुरावा

वरील आकृतीमध्ये EHGF समभुज चौकोन आहे ज्याचे कर्ण HF (लांबी d1) आणि EG (लांबी d2) आहेत.

समभुज चौकोनाचे EHGF क्षेत्रफळ = त्रिकोण EFH चे क्षेत्रफळ + त्रिकोण FHG चे क्षेत्रफळ

\small =\frac{1}{2} \times (\frac{d2}{2}) \times d1+\frac{1}{2} \times (\frac{d2}{2}) \times d1

\small =\frac{(d1\times d2)}{4}+\frac{(d1\times d2)}{4}

\small =\frac{2(d1 \times d2))}{4}

\small =\frac{d1 \times d2}{2}

= कर्णांच्या गुणाकाराच्या निम्मे

उदाहरण

पुढील समभुज चौकोनाचे क्षेत्रफळ शोधा.

उत्तर:

दिलेल्या आकृतीमध्ये,

PR = d1= 24 सेमी.

SQ = d2 = 18 सेमी.

\small \boldsymbol{A}\left ( PQRS \right ) = \frac{1}{2}\times d1 \times d2

\small = \frac{1}{2}\times 24 \times 18

\small = 216

म्हणून समभुज चौकोन PQRS चे क्षेत्रफळ 216 सेमी2 आहे.

Answered by Abhijeet1589
0

उत्तर 80 सें.मी

दिले

समभुज चौकोनाचे कर्ण = 24 सेमी आणि 32 सेमी

शोधण्यासाठी

समभुज चौकोनाची परिमिती.

उपाय

वरील समस्येचे निराकरण खालीलप्रमाणे करता येते;

समभुज चौकोन असू द्या, ABCD आणि AC आणि BD हे त्याचे कर्ण आहेत.

परिमिती = 4 × बाजू.

समभुज चौकोनाची बाजू खालीलप्रमाणे मोजली जाऊ शकते;

= √{(AC/2)² + (BD/2)²}

= √{(24/2)² + (32/2)²}

= √(१४४ + २५६)

= √400

= 20 सेमी

परिमिती = 4 × 20 = 80 सेमी

म्हणून, उत्तर 80 सेमी आहे

#SPJ3

Similar questions