Math, asked by hhanumentha, 9 months ago

18. Find the sum of first 20 terms of A.P. 5, 9, 13, using the formula.
19. Show that the equation 4x² + 3x - 5 = 0 has no real roots.​

Answers

Answered by simrankamboj178
10

Step-by-step explanation:

18. a= 5

d= 9-5 = 4

Sn = n/2 (2a+(n-1)d )

= 20/2 ( 2×5 +(20-1)4 )

= 10( 10 +76)

= 10(86)

= 860

Answered by BrainlyConqueror0901
27

QUESTION : 18

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{s_{20}=860}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline \bold{Given:}} \\  \tt{:   \implies Arithmetic \: Progressions(A.P) = 5,9,13,..} \\  \\  \tt{:   \implies Total \: number \: of \: terms(n)= 20} \\   \\ \red{ \underline \bold{To \: Find:}} \\  \tt{: \implies Sum \: of \: 20th \: terms( s_{20}) =?}

• According to given question :

  \tt{\circ \: First \: term(a) =5}  \\  \\ \tt{\circ \: Common \: difference(d)=4}  \\   \\   \tt{\circ \: Number \: of \: terms (n)=20} \\ \\  \bold{As \: we \: know \: that} \\  \tt{ :  \implies s =  \frac{n}{2} (2a +( n - 1)d)} \\  \\  \text{putting \: given \: values} \\  \tt{:  \implies  s_{20}   =  \frac{20}{2} (2 \times 5 + (20 - 1) \times 4)} \\  \\ \tt{: \implies  s_{20}  = 10(10 + 76)} \\  \\  \tt{:  \implies  s_{20} = 10 \times 86} \\  \\   \green{\tt{: \implies  s_{20}  = 860}}

QUESTION : 19

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{D>0}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline \bold{given:}} \\  \tt{: \implies 4 {x}^{2}  + 3x - 5 = 0} \\  \\ \red{ \underline \bold{to \: find:}} \\  \tt{:  \implies D = ?}

• According to given question :

  \tt{: \implies  {4x}^{2} + 3x - 5 = 0} \\ \\   \tt{\circ \: a = 4} \\   \\   \tt{ \circ \: b = 3} \\  \\  \tt{ \circ \: c =  - 5 } \\  \\  \bold{As \: we \: know \: that} \\  \tt{:  \implies D =  {b}^{2}  - 4ac} \\  \\  \tt{: \implies D=  {3}^{2}  - 4 \times 4 \times ( - 5)} \\  \\  \tt{: \implies D = 9  + 80} \\  \\  \tt{: \implies D = 89} \\  \\   \green{\tt{:  \implies D > 0}}

Similar questions