Chemistry, asked by nitulization, 1 month ago

18 g of glucose is present in 250 g of water. The freezing point of the aqueous solution of glucose is (Kf of water = 1.86 K kg mol-1)
-1.52°C
-2.5°C
-0.74°C
-1.85°C​

Answers

Answered by TrustedAnswerer19
9

 \boxed{ \boxed{ \begin{array}{cc}  \sf \:  \to \: given \:  :  \\  \\ \hookrightarrow \sf \:mass \: of \: glucose \:  \: w = 18 \: g \\  \\ \hookrightarrow \sf \:mass \: of \: water (sovent)\: , \:w_s  = 250 \: g = 0.2 5\: kg \\  \\ \hookrightarrow \sf \:k_f \: of \: water = 1.86 \: k \: kg \:  {mol}^{ - 1} \\  \\  \bf \: we \: know  \: that, \\   \\  \red{ \hookrightarrow \sf \:molecular \: mass \: of \: glucose = M = 180} \\  \\  \bf \: and \\  \\ \pink{ \boxed{ \Delta\:T_f = k_f \times m}} \:  \:  \:  -  -  - (1) \\  \\  \rm \: here \\ \hookrightarrow \sf \:\Delta\:T_f = change \:  in \:  freezing \:  point \:  \\  \\ \hookrightarrow \sf\:k_f=freezing \:  point  \: constant \:  \\  \\  \hookrightarrow \sf \: \: m = molality \:  \\  \\ \end{array}}}

 \boxed{ \boxed{ \begin{array}{cc} \bf \: now \\  \\  \blue{  \sf \: molality \:  \: m = \frac{ \sf \: number \: of \: mole(n)}{mass \: of \: solvent(w_s) \: in \: kg} }  \\  \\  \sf \implies \: m =  \frac{ \frac{w}{M} }{w_s} \\  \\  =   \frac{ \frac{18}{180} }{0.25}  \\  \\   =  \frac{18}{180 \times 0.25} \\  \\  = 0.4 \: molal \\  \\   \red{\therefore \: molality \:  \: m = 0.4 \:  \: molal}  \\  \\ now \: from \: eqn.(1) \\  \\   \\ \Delta\:T_f = k_f \times m \\  \\  = 1.86 \times 0.4 \\  \\  = 0.744 \: \sf \:  k \\  \\   \bf \: \therefore \: \Delta\:T_f = 0.744 \: k \:  \:  \: ( \sf \: in \: kelvin \: scale) \\  \\  \\   \sf \: freezing \: point \: of \: solution = 273 - 0.744  \\  = 272.256 \: k\\  \\  \\  \sf \: convert \: it \:i nto \:  \: celcius \: scale = 272.256 - 273 \\  \\  = -  0.744 {}^{ \circ}   \sf\: c \:  \\  \\  \sf \: (answer)\end{array}}}

So correct answer is option C) -0.74°C

Similar questions