Math, asked by Anonymous, 4 months ago

18. If A = (x:x² - 3x + 2 = 0; and
B=(x:x² + 2x - 8 = 0), then (A - B) is
(a) {1,2)
(b) (2)
(c) {1}
(d) {4,3} ​

Answers

Answered by tennetiraj86
6

Answer:

Option C

Step-by-step explanation:

Given:-

A = {x:x² - 3x + 2 = 0}; and

B={x:x² + 2x - 8 = 0}

To find:-

The value of A-B

Solution:-

Given sets are A={x:x² - 3x + 2 = 0}

-3x+2=0

=>-x-2x+2=0

=>x(x-1)-2(x-1)=0

=>(x-1)(x-2)=0

=>x-1=0 or x-2=0

=>x=1 and 2

A={1,2}

and B={x:x² + 2x - 8 = 0}

+2x-8=0

=>+4x-2x-8=0

=>x(x+4)-2(x+4)=0

=>(x+4)(x-2)=0

=>x+4=0 or x-2=0

=]x=-4 and 2

B={-4,2}

Now

A-B={1,2}-{-4,2}={1}

Answer:-

A-B={1}


Anonymous: thanks bro
tennetiraj86: welcome
Answered by mathdude500
9

\large\underline\blue{\bold{Given  :-  }}

  • A = {x : x² - 3x + 2 = 0}
  • B = {x : x² + 2x - 8 = 0}

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\blue{\bold{To \:  Find :-  }}

  • A - B

─━─━─━─━─━─━─━─━─━─━─━─━─

Definition :-

Set Difference: The relative complement or set difference of sets A and B, denoted A – B, is the set of all elements in A that are not in B.

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\purple{\bold{Solution :-  }}

─━─━─━─━─━─━─━─━─━─━─━─━─

☆ Consider, A = {x : x² - 3x + 2 = 0}

☆ A = {x : x² - 2x - x + 2 = 0}

☆ A = {x : x(x - 2) - 1(x - 2) = 0}

☆ A = {x : (x - 2)(x - 1) = 0}

☆ A = {1, 2}

─━─━─━─━─━─━─━─━─━─━─━─━─

☆ Consider, B = {x : x² + 2x - 8 = 0}

☆ B = {x : x² + 4x - 2x - 8 = 0}

☆ B = {x : x(x + 4)x - 2(x - 4) = 0}

☆ B = {x : (x + 4)(x - 2) = 0}

☆ B = {2, - 4}

─━─━─━─━─━─━─━─━─━─━─━─━─

Hence, A - B = {1}

─━─━─━─━─━─━─━─━─━─━─━─━─

\large{\boxed{\boxed{\bf{Option  \: (c) \:  is  \: correct}}}}

─━─━─━─━─━─━─━─━─━─━─━─━─

Similar questions