18. If A = (x:x² - 3x + 2 = 0; and
B=(x:x² + 2x - 8 = 0), then (A - B) is
(a) {1,2)
(b) (2)
(c) {1}
(d) {4,3}
Answers
Answer:
Option C
Step-by-step explanation:
Given:-
A = {x:x² - 3x + 2 = 0}; and
B={x:x² + 2x - 8 = 0}
To find:-
The value of A-B
Solution:-
Given sets are A={x:x² - 3x + 2 = 0}
x²-3x+2=0
=>x²-x-2x+2=0
=>x(x-1)-2(x-1)=0
=>(x-1)(x-2)=0
=>x-1=0 or x-2=0
=>x=1 and 2
A={1,2}
and B={x:x² + 2x - 8 = 0}
x²+2x-8=0
=>x²+4x-2x-8=0
=>x(x+4)-2(x+4)=0
=>(x+4)(x-2)=0
=>x+4=0 or x-2=0
=]x=-4 and 2
B={-4,2}
Now
A-B={1,2}-{-4,2}={1}
Answer:-
A-B={1}
- A = {x : x² - 3x + 2 = 0}
- B = {x : x² + 2x - 8 = 0}
─━─━─━─━─━─━─━─━─━─━─━─━─
- A - B
─━─━─━─━─━─━─━─━─━─━─━─━─
Definition :-
Set Difference: The relative complement or set difference of sets A and B, denoted A – B, is the set of all elements in A that are not in B.
─━─━─━─━─━─━─━─━─━─━─━─━─
─━─━─━─━─━─━─━─━─━─━─━─━─
☆ Consider, A = {x : x² - 3x + 2 = 0}
☆ A = {x : x² - 2x - x + 2 = 0}
☆ A = {x : x(x - 2) - 1(x - 2) = 0}
☆ A = {x : (x - 2)(x - 1) = 0}
☆ A = {1, 2}
─━─━─━─━─━─━─━─━─━─━─━─━─
☆ Consider, B = {x : x² + 2x - 8 = 0}
☆ B = {x : x² + 4x - 2x - 8 = 0}
☆ B = {x : x(x + 4)x - 2(x - 4) = 0}
☆ B = {x : (x + 4)(x - 2) = 0}
☆ B = {2, - 4}
─━─━─━─━─━─━─━─━─━─━─━─━─
Hence, A - B = {1}
─━─━─━─━─━─━─━─━─━─━─━─━─
─━─━─━─━─━─━─━─━─━─━─━─━─