Math, asked by 7397317272, 6 hours ago

18. If Selling Price Of 10 Articles is equal to cost price Of 15 Articles. then find Loss or gain%? (a) 50% gain (B) 50 % loss c)33.3%gain d) 33.3 % Loss​

Answers

Answered by beyourself0444
0

Answer:

C

Step-by-step explanation:

15=100

5=?

=> 5.100/15

=>33.3% gain

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given that

  • Selling Price of 10 articles is equal to Cost Price of 15 articles.

Let assume that

  • Cost price of 1 article be Rs x

So,

  • Cost Price of 15 articles = Rs 15x

Since, it is given that

Selling Price of 10 articles is equal to Cost Price of 15 articles.

Selling Price of 10 articles = Rs 15x

Now, We have

Cost Price of 10 articles = Rs 10x

Selling Price of 10 articles = Rs 15x

It means, Selling Price > Cost Price

It implies, there is Profit in this transaction.

Thus,

 \red{\rm :\longmapsto\:Profit = Selling Price - Cost Price}

\rm :\longmapsto\:Profit = 15x - 10x

\bf\implies \:Profit = 5x

Now, We know

 \red{\boxed{\tt{ Profit \: \% \:  =  \:  \frac{Profit}{Cost Price}  \times 100 \: \% \: }}}

So, on substituting the values, we get

\rm :\longmapsto\:Profit \: \% \:  =  \: \dfrac{5x}{10x}  \times 100 \: \%

\bf\implies \:Profit \: \% \:  =  \: 50 \: \%

So, Option (a) is correct

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{Gain = \sf S.P. \: – \: C.P.} \\ \\ \bigstar \:\bf{Loss = \sf C.P. \: – \: S.P.} \\ \\ \bigstar \: \bf{Gain \: \% = \sf \Bigg( \dfrac{Gain}{C.P.} \times 100 \Bigg)\%} \\ \\ \bigstar \: \bf{Loss \: \% = \sf \Bigg( \dfrac{Loss}{C.P.} \times 100 \Bigg )\%} \\ \\ \\ \bigstar \: \bf{S.P. = \sf\dfrac{(100+Gain\%) or(100-Loss\%)}{100} \times C.P.} \\ \: \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Similar questions