18) If sin ^4 + sin^2= 1, then prove that
tan^4 - tan² = 1
Answers
Answered by
24
⠀⠀ || ✪ ϙᴜᴇsᴛɪᴏɴ ✪ ||
If sin⁴ θ + sin² θ = 1, then prove that
tan⁴ θ - tan² θ = 1 .
⠀⠀|| ☆.ANSWER.☆ ||
Given :-
- sin⁴ θ + sin² θ = 1, ..........(1)
To prove :-
- tan⁴ θ - tan² θ = 1 . ........(2)
|| ☆.Explanation.☆ ||
Take L.H.S. of equ(1),
= tan⁴ θ - tan² θ
Keep,
- tan θ = sin θ/cos θ
= sin⁴ θ/cos⁴ θ - sin² θ /cos² θ
keep by equ(1),
- sin⁴ θ = 1 - sin² θ
= ( 1- sin² θ )/cos⁴ θ - sin² θ /cos² θ
Now, keep
- (1- sin² θ ) = cos² θ
= ( cos² θ )/cos⁴ θ - sin² θ /cos² θ
= 1/cos² θ - sin² θ /cos² θ
= ( 1- sin² θ )/cos² θ
= cos² θ / cos² θ
= 1
= R.H.S.
That's proved.
★Important Formula
➠ tan x = sin x / cos x
➠ cot x = cos x / sin x
➠ sin x = 1/cosec x
➠ cos x = 1/sec x
➠sin x . cosec x = 1
➠ tan x . cot x = 1
➠ sin² x + cos² x = 1
➠ cosec² x - tan² x = 1
➠ sec² x - tan² x = 1
_____________________
Similar questions