18. If x + 1 /x= v√5, find the values of x² + 1/x2
and x4+1/x4.
Answers
Answered by
2
Solution
Given :-
- x + 1/x = √5 ______(1)
Find :-
- Value of x² + 1/x²
- Value of x⁴ + 1/x⁴
Explanation
Formula
First Calculate x² + 1/x²
For this, Squaring both side of equ(1)
==> (x + 1/x)² ✓ (√5)²
==> x² + (1/x)² + 2x × 1/x = √5 × √5
==> x² + 1/x² + 2 = 5
==> x² + 1/x² = 5 - 3
==.> x² + 1/x² = 2 ________(2)
_____________________
Now, Calculate x⁴ + 1/x⁴
For this, squaring both side of equ(2)
==> (x² + 1/x²)² = 2²
==> x⁴ + 1/x⁴ + 2×x² × 1/x² = 4
==> x⁴ + 1/x⁴ + 2 = 4
==> x⁴ + 1/x⁴ = 4 - 2
==> x⁴ + 1/x⁴ = 2
Hence
- Value of x² + 1/x² = 2
- Value of x⁴ + 1/x⁴ = 2
_________________
Similar questions