18. In a triangle ABC, if the median AD makes an angle theta with BC and AB = 2 AD then sin theta=
a) 2sin A
b) 2 sin B
c) 2sin C
d) sin A + sin B
Answers
Answered by
21
Answer:
Let ∠ADC=α
Using Sine law in ΔADC we get;
sin(A−θ)2a=sin αb (1)
Using Sine law in ΔABD we get;
c/sinθ2a=sin(π−α)⟹sinθ2a=sinαc
⟹sinα=2acsinθ
Putting the value of sinα in equation 1; we get
sin(A−θ)(2a)=csinθb(2a)
⟹sin(A−θ)=bcsinθ
Hence; sin(A−θ)=bcsinθ
Answered by
3
Let ∠ADC=α
Using Sine law in ΔADC we get;
sin(A−θ)
2
a
=
sinα
b
(1)
Using Sine law in ΔABD we get;
sinθ
2
a
=
sin(π−α)
c
⟹
sinθ
2
a
=
sinα
c
⟹sinα=
2
a
c
sinθ
Putting the value of sinα in equation 1; we get
sin(A−θ)
(
2
a
)
=
csinθ
b(
2
a
)
⟹sin(A−θ)=
b
c
sinθ
Hence; sin(A−θ)=
b
c
sinθ
Similar questions