Math, asked by pugazh10, 11 months ago

18 Notebooks and 32 pens together cost Rs. 642, while 32 notebooks and 18 pencils together cost Rs. 908. Find the cost of each notebook.​

Answers

Answered by Anonymous
43

Given :

  • 18 Notebooks and 32 pens together cost Rs. 642.
  • 32 notebooks and 18 *pens* together cost Rs. 908.

To Find :

  • Cost of each notebook
  • Cost of each pens

Solution :

Let the cost of each notebooks be x.

Let the cost of each pen be y.

Case 1 :

Cost of 18 notebook and 32 pens is 642.

Equation :

\longrightarrow \sf{18x+32y=642}

\longrightarrow \sf{18x=642-32y}

\sf{x=\dfrac{642-32y}{18}\:\:(i)}

Case 2 :

Cost of 32 notebooks and 18 pens cost ₹ 908 altogether.

Equation :

\sf{32x+18y=908}

From equation (i),

\longrightarrow \sf{32\:\times\:\big(\dfrac{642-32y}{18}\big)\:+\:18y\:=\:908}

\longrightarrow \sf{\dfrac{20544-1024y}{18}+18y=908}

\longrightarrow \sf{\dfrac{20544\:-\:1024y+324y}{18}\:=\:908}

\longrightarrow \sf{\dfrac{20544-700y}{18}=908}

\longrightarrow \sf{20544-700y=908\:\times\:18}

\longrightarrow \sf{20544-700y=16344}

\longrightarrow \sf{-700y=16344-20544}

\longrightarrow \sf{-700y=-4200}

\longrightarrow \sf{y=\dfrac{\cancel{-}42\cancel{00}}{\cancel{-}7\cancel{00}}}

\longrightarrow \sf{y=\cancel\dfrac{42}{7}}

\longrightarrow \sf{y=6}

Substitute, y = 6 in equation (i),

\longrightarrow \sf{x=\dfrac{642-32y}{18}}

\longrightarrow \sf{x=\dfrac{642-32(6)}{18}}

\longrightarrow \sf{x=\dfrac{642-192}{18}}

\longrightarrow \sf{x=\cancel\dfrac{450}{18}}

\longrightarrow\sf{x=25}

\large{\boxed{\sf{\purple{Cost\:of\:each\:notebook\:=\:x\:=\:Rs.\:25}}}}

\large{\boxed{\sf{\purple{Cost\:of\:each\:pen\:=\:y\:=\:Rs.\:6}}}}

Similar questions