Math, asked by sumitsharma55, 5 months ago

18
Number x is 10% more than number y Number y is 10% more than number z. How much
percent is number : less than number?​

Answers

Answered by ItzMysticalBoy
113

Given :

  • Number x is 10% more than number y.
  • Number y is 10% more than number z.

To Find :

  • Less%.

Solution :-

Let the number z be x.

Then, number y :

\to{ \sf{10 \% \: more \: than \: number \: z.}}\\ \\

\to{ \sf{x + 10\% \: of \: x}} \\ \\

\to{ \sf{x + x \times \dfrac{1 \cancel{0}}{10 \cancel{0}} }} \\ \\

\to{ \sf{x + \dfrac{x}{10}}}\\ \\

\to{ \sf{\dfrac{10x + x}{10} }}\\ \\

\to{\tt{\dfrac{11x}{10} }}

___________________

And the number x :

\to{\sf{ 10 \% \: more \: than \: number \: y.}}\\ \\

\to{\sf{\dfrac{11x}{10} + 10\% \: of \: \dfrac{11x}{10} }}

\to{\sf{\dfrac{11x}{10} + \dfrac{11x}{ \cancel{10}} \times \dfrac{ \cancel{10}}{100} }}

\to{ \sf{ \dfrac{11x}{10} + \dfrac{11x}{100} }}

\to{ \sf{ \dfrac{110x + 11x}{100} }}

\to{ \tt{ \dfrac{121x}{100}}}

___________________

: \implies{\sf{Less = Number \: x -Number \: z }}

: \implies{\sf{Less = \dfrac{121x }{100} - x }}\\ \\

: \implies{\sf{Less = \dfrac{121x - 100x}{100} }}\\ \\

: \implies{\tt{Less = \dfrac{21x}{100} }}

____________________

: \implies {\sf{Less \%= \bigg( \dfrac{Less}{Number \: x} \times 100\bigg)\%}}\\ \\

: \implies {\sf{Less \%= \bigg( \dfrac{\dfrac{21x}{100}}{\dfrac{121x}{100} } \times 100\bigg)\%}}\\ \\

: \implies {\sf{Less \%= \bigg( \dfrac{21 \cancel{x}}{ \cancel{100}} \times \dfrac{ \cancel{100 }}{121 \cancel{x}} \times 100\bigg)\%}}\\ \\

: \implies{ \sf{ Less \% = \bigg( \cancel{\dfrac{2100}{121}} \bigg)}}\\ \\

: \implies{ \underline{ \boxed {\bf{\red{Less \% = 17.36 \%\: (approx) }}}}}

\therefore{\underline{\tt{Less\%=17.36 \%\: (approx).}}}


Anonymous: Nice!
Answered by SANDHIVA1974
2

★Given :

Number x is 10% more than number y.

Number y is 10% more than number z.

★To Find :

Less%.

❇Solution :-

Let the number z be x.

Then, number y :

\to{ \sf{10 \% \: more \: than \: number \: z.}}\\ \\

\to{ \sf{x + 10\% \: of \: x}} \\ \\

\to{ \sf{x + x \times \dfrac{1 \cancel{0}}{10 \cancel{0}} }} \\ \\

\to{ \sf{x + \dfrac{x}{10}}}\\ \\

\to{ \sf{\dfrac{10x + x}{10} }}\\ \\

\to{\tt{\dfrac{11x}{10} }}

___________________

And the number x :

\to{\sf{ 10 \% \: more \: than \: number \: y.}}\\ \\

\to{\sf{\dfrac{11x}{10} + 10\% \: of \: \dfrac{11x}{10} }}

\to{\sf{\dfrac{11x}{10} + \dfrac{11x}{ \cancel{10}} \times \dfrac{ \cancel{10}}{100} }}

\to{ \sf{ \dfrac{11x}{10} + \dfrac{11x}{100} }}

\to{ \sf{ \dfrac{110x + 11x}{100} }}

\to{ \tt{ \dfrac{121x}{100}}}

___________________

: \implies{\sf{Less = Number \: x -Number \: z }}

: \implies{\sf{Less = \dfrac{121x }{100} - x }}\\ \\

: \implies{\sf{Less = \dfrac{121x - 100x}{100} }}\\ \\

: \implies{\tt{Less = \dfrac{21x}{100} }}

____________________

: \implies {\sf{Less \%= \bigg( \dfrac{Less}{Number \: x} \times 100\bigg)\%}}\\ \\

: \implies {\sf{Less \%= \bigg( \dfrac{\dfrac{21x}{100}}{\dfrac{121x}{100} } \times 100\bigg)\%}}\\ \\

: \implies {\sf{Less \%= \bigg( \dfrac{21 \cancel{x}}{ \cancel{100}} \times \dfrac{ \cancel{100 }}{121 \cancel{x}} \times 100\bigg)\%}}\\ \\

: \implies{ \sf{ Less \% = \bigg( \cancel{\dfrac{2100}{121}} \bigg)}}\\ \\

: \implies{ \underline{ \boxed {\bf{\red{Less \% = 17.36 \%\: (approx) }}}}}

\therefore{\underline{\tt{Less\%=17.36 \%\: (approx).}}}

Similar questions