Math, asked by chiranjibdas9d262020, 3 days ago

18) Prove that : CosA - SinA + 1 / Cos A + Sin A - 1 = 1 + Sin A / Cos A​

Answers

Answered by apple2422
0

Answer:

We have,  

1+csosA−sinA

1+cosA+sinA

​  

 

=  

1+cosA−sinA

1+cosA+sinA

​  

×  

(1+cosA)+sinA

(1+cosA)+sinA

​  

 

=  

(1+cosA)  

2

−sin  

2

A

((1+cosA)+sinA)  

2

 

​  

 

=  

1+cos  

2

A+2cosA−1+cos  

2

A

(1+cosA)  

2

+sin  

2

A+2(1+cosA)sinA

​  

 

=  

2cos  

2

A+2cosA

1+cos  

2

A+sin  

2

A+2cosA+2sinA+2sinAcosA

​  

 

=  

2cos  

2

A+2cosA

1+cos  

2

A+sin  

2

A+2cosA+2sinA+2sinAcosA

​  

 

2cosA(1+cosA)

1+1+2cosA+2sinA+2sinAcosA

​  

 

2cosA(1+cosA)

2+2cosA+2sinA+2sinAcosA

​  

 

cosA(1+cosA)

1+cosA+sinA+sinAcosA

​  

 

=  

cosA(1+cosA)

1+sinA+cosA(1+sinA)

​  

 

=  

cosA(1+cosA)

(1+sinA)(1+cosA)

​  

 

=  

cosA

1+sinA

​  

 

Hence proved.

Step-by-step explanation:

PLS MARK IT AS BRAINLIEST

Answered by UltimateAK
1

Answer:

  • Prove that : CosA - SinA + 1 / Cos A + Sin A - 1 = 1 + Sin A / Cos A

Step-by-step explanation:

  • LHS = cosA /(1-sinA ) + sinA / (1-cosA) + 1
  • = [ COSA (1-cosA)+sinA(1-sinA)+(1-sinA) (1-COSA) ]/
  • (1-sinA ) (1- cosA)
  • = [ cosA -cos² A+ sinA - sin² A +1 -cosA-sinA +sinAcosA]/(1-sinA) (1 COSA)
  • =[-(cos²A + sin² A) + 1+ sinAcosA ] / (1-sinA)(1-cosA)
  • = [-1 + 1 + sinAcosA ]/(1- sinA ) ( 1- cosA)
  • = sinAcosA / (1-sinA) (1 - cosA)
  • = RHS

please make it a brainliest answer.

Similar questions