Math, asked by shahnoor21, 5 months ago

(18) Prove that cosA-sinA+1 / cosA+sinA-1 = cosecA + cotA = 1+cosA / sinA


please read carefully and say it properly ​

Answers

Answered by Anonymous
8

Answer:

ANSWER

LHS=

cosA+sinA−1

cosA−sinA+1

dividing Nr and Dr by sinA we get,

=

sinA

cosA

+

sinA

sinA

sinA

1

sinA

cosA

sinA

sinA

+

sinA

1

=

cotA+1−cosecA

cotA−1+cosecA

=

cotA+1−cosecA

cotA+cosecA−(cosec

2

A−cot

2

A)

=

cotA+1−cosecA

(cotA+cosecA)(1−cosecA+cotA)

=cotA+cosecA=RHS

Step-by-step explanation:

please see it properly

and try to understand..

dear it will be helpful for you

Answered by aryan073
19

Given :

Prove that :

 \\  \pink \bigstar \rm \:  \frac{cosx - sinx + 1}{cosx + sinx - 1}  = cosecx + cotx

________________________________________

Formulas :

 \pink \bigstar \bf \:  {cosec }^{2}  \theta -  {cot}^{2}  \theta = 1

  \\ \red \bigstar \bf  {sec}^{2}  \theta -  {tan}^{2}  \theta = 1

 \blue \bigstar \bf \:  {sin}^{2}  \theta +  {cos}^{2} \theta = 1

________________________________________

Solution :

From LHS:

  \\ \longrightarrow \sf \frac{cosx - sinx + 1}{cosx + sinx - 1}  \\  \\  \therefore \bf \: we \: know \: that \:  \\  \pink \bigstar \bf \:  {cosec}^{2}  \theta -  {cot}^{2}  \theta = 1   \\  \pink \bigstar \bf \:  {sec}^{2}  \theta -  {tan }^{2}  \theta = 1 \\  \pink \bigstar \bf{sin}^{2}  \theta +  {cos}^{2}  \theta = 1

Hence,

  \\ \longrightarrow \sf \:  \frac{cosx - sinx + 1}{cosx + sinx - 1}  \\  \\  \\  \longrightarrow \sf \:  \frac{ \lgroup \: cosx + (1 - sinx) \rgroup}{ \lgroup \: cosx - (1 - sinx) \rgroup}  \times  \frac{ \lgroup \: cosx + (1 - sinx) \rgroup}{ \lgroup \: cosx + (1 - sinx) \rgroup}  \\  \\  \\  \longrightarrow  \sf \:   \frac{ { \lgroup \: cosx + (1 - sinx) \rgroup}^{2} }{ \lgroup {cos}^{2} x - (1 -  {sin}^{2} x) \rgroup}  \\  \\  \\  \longrightarrow \sf \:  \frac{ {cos}^{2} x + 1 +  {sin}^{2} x - 2sinx + 2cosx(1 - sinx)}{ {cos}^{2} x - 1 -  {sin}^{2} x + 2sinx}  \\  \\  \\  \longrightarrow \sf \:  \frac{2 - 2sinx + 2cosx(1 - sinx)}{ - 2 {sin}^{2} x + 2sinx}  \\  \\  \\  \longrightarrow \sf \:  \frac{2(1 - sinx)(1 + cosx)}{2sinx(1 - sinx)}  \\  \\  \\  \longrightarrow \sf \:  \frac{(1 + cosx)}{sinx}  \\  \\  \longrightarrow \sf \:  \frac{1}{sinx}  +  \frac{cosx}{sinx}  \\  \\  \longrightarrow \boxed{ \sf{ cosecx + cotx}}

RhS:

 \green \bigstar \sf \: cosecx + cotx

We can see that LHS=RHS, so we can write.

 \\  \blue \bigstar \boxed{ \sf{ \frac{cosx  -  sinx  + 1}{cosx + sinx - 1}  = cosecx + cotx}}

________________________________________

Properties :

 \bf \: (1) \:  \frac{1}{sinx}  = cosecx \\  \\  \bf \:( 2) \:  \frac{1}{cosecx}  = sinx \\  \\  \bf \: (3) \:  tanx =  \frac{sinx}{cosx}  =  \frac{1}{cotx}  \\  \\  \bf (4)\: cosx =  \frac{1}{secx}

Similar questions