Math, asked by deepamagadi0, 6 months ago

18) PT the following identities:
Sin^8 theta - cos^8 theta = (sin^2 theta - cos^2 theta ) (1-2 sin^2 theta cos^2 theta )​

Answers

Answered by Anonymous
1

Solution :

\bf{sin^{8}\theta - cos^{8}\theta = (sin^{2}\theta - cos^{2}\theta)(1 - 2sin^{2}\theta cos^{2}\theta)}

From the above equation , we get :

  • LHS = \bf{sin^{8}\theta - cos^{8}\theta} \\ \\

  • RHS = \bf{sin^{2}\theta - cos^{2}\theta)(1 - 2sin^{2}\theta cos^{2}\theta)}

By solving the LHS of the equation , we get :

:\implies \bf{sin^{8}\theta - cos^{8}\theta} \\ \\ \\

By using the identity and substituting it in the equation, we get :

\bf{a^{8} - b^{8} = (a + b)(a - b)(a^{2} + b^{2})(a^{4} + a^{4})} \\ \\

:\implies \bf{(sin\theta - cos\theta)(sin\theta + cos\theta)(sin^{2}\theta + cos^{2}\theta)(sin^{4}\theta + cos^{4}\theta)} \\ \\ \\

:\implies \bf{(sin^{2}\theta - cos^{2}\theta)(sin^{2}\theta + cos^{2}\theta)(sin^{4}\theta + cos^{4}\theta)} \\ \\ \\

:\implies \bf{(sin^{2}\theta - cos^{2}\theta)(sin^{2}\theta + cos^{2}\theta)\{(sin^{2}\theta)^{2} + (cos^{2}\theta)^{2}\}} \\ \\ \\

By using the identity and substituting it in the equation , we get :

\bf{a^{2} + b^{2} = (a + b)^{2} - 2ab} \\ \\

:\implies \bf{(sin^{2}\theta - cos^{2}\theta)(sin^{2}\theta + cos^{2}\theta)\{(sin^{2}\theta + cos^{2}\theta)^{2} - 2sin^{2}\theta cos^{2}\theta\}} \\ \\ \\

By using the identity and substituting it in the equation , we get :

\bf{sin^{2}\theta + cos^{2}\theta = 1} \\ \\

:\implies \bf{(sin^{2}\theta - cos^{2}\theta)(1)(1^{2} - 2sin^{2}\theta cos^{2}\theta)} \\ \\ \\

:\implies \bf{(sin^{2}\theta - cos^{2}\theta)(1 - 2sin^{2}\theta cos^{2}\theta)} \\ \\ \\

\boxed{\therefore \bf{LHS = (sin^{2}\theta - cos^{2}\theta)(1 - 2sin^{2}\theta cos^{2}\theta)}} \\ \\ \\

Now by putting the LHS and RHS together , we get :

:\implies \bf{LHS = RHS} \\ \\ \\

:\implies \bf{(sin^{2}\theta - cos^{2}\theta)(1 - 2sin^{2}\theta cos^{2}\theta) = (sin^{2}\theta - cos^{2}\theta)(1 - 2sin^{2}\theta cos^{2}\theta)} \\ \\ \\

Hence it is proved that :

\boxed{\therefore \bf{sin^{8}\theta - cos^{8}\theta = (sin^{2}\theta - cos^{2}\theta)(1 - 2sin^{2}\theta cos^{2}\theta)}}

Proved !!

Similar questions