18. Rationalize the denominator 1 upon √3−√2+1
Answers
Answered by
0
Here is your answer :
\frac{1}{ \sqrt{3} - \sqrt{2} - 1}3−2−11
= \frac{1}{( \sqrt{3} - \sqrt{2} ) - 1} \times \frac{ ( \sqrt{3} - \sqrt{2} ) + 1 }{ (\sqrt{3} - \sqrt{2} ) + 1}=(3−2)−11×(3−2)+1(3−2)+1
= \frac{ (\sqrt{3} - \sqrt{2} ) + 1}{(( \sqrt{3} - \sqrt{2} ) - 1)( \sqrt{3} - \sqrt{2} ) + 1)}=((3−2)−1)(3−2)+1)(3−2)+1
= \frac{ (\sqrt{3} - \sqrt{2} ) + 1}{ {( \sqrt{3} - \sqrt{2} ) }^{2} - {(1)}^{2} }=(3−2)2−(1)2(3−2)+1
= \frac{ \sqrt{3} - \sqrt{2} + 1 }{3 + 2 - 2 \sqrt{6} - 1}=3+2−26−13−2+1
= \frac{ \sqrt{3} - \sqrt{2} + 1}{4 - 2 \sqrt{6} }=4−263−2+1
Now, rationalise this denominator..
= \frac{ \sqrt{3} - \sqrt{2} + 1}{4 - 2 \sqrt{6} } \times \frac{4 + 2 \sqrt{6} }{4 + 2 \sqrt{6} }=4−263−2+1×4+264+26
= \frac{( \sqrt{3} - \sqrt{2} + 1)(4 + 2 \sqrt{6}) }{(4 - 2 \sqrt{6})(4 + 2 \sqrt{6} ) }=(4−26)(4+26)(3−2+1)(4+26)
= \frac{ 4 \sqrt{3} - 4 \sqrt{2} + 4 + 2 \sqrt{18} - 2 \sqrt{12} + 2 \sqrt{6} }{16 -24 }=16−2443−42+4+218−212+26
\frac{4 \sqrt{3} - 4 \sqrt{2} + 4 + 18 \sqrt{2} - 4 \sqrt{3} + 2 \sqrt{6} }{ - 8}−843−42+4+182−43+26
= \frac{14 \sqrt{2} + 2 \sqrt{6} + 4 }{ - 8}=−8142+26+4
\frac{1}{ \sqrt{3} - \sqrt{2} - 1}3−2−11
= \frac{1}{( \sqrt{3} - \sqrt{2} ) - 1} \times \frac{ ( \sqrt{3} - \sqrt{2} ) + 1 }{ (\sqrt{3} - \sqrt{2} ) + 1}=(3−2)−11×(3−2)+1(3−2)+1
= \frac{ (\sqrt{3} - \sqrt{2} ) + 1}{(( \sqrt{3} - \sqrt{2} ) - 1)( \sqrt{3} - \sqrt{2} ) + 1)}=((3−2)−1)(3−2)+1)(3−2)+1
= \frac{ (\sqrt{3} - \sqrt{2} ) + 1}{ {( \sqrt{3} - \sqrt{2} ) }^{2} - {(1)}^{2} }=(3−2)2−(1)2(3−2)+1
= \frac{ \sqrt{3} - \sqrt{2} + 1 }{3 + 2 - 2 \sqrt{6} - 1}=3+2−26−13−2+1
= \frac{ \sqrt{3} - \sqrt{2} + 1}{4 - 2 \sqrt{6} }=4−263−2+1
Now, rationalise this denominator..
= \frac{ \sqrt{3} - \sqrt{2} + 1}{4 - 2 \sqrt{6} } \times \frac{4 + 2 \sqrt{6} }{4 + 2 \sqrt{6} }=4−263−2+1×4+264+26
= \frac{( \sqrt{3} - \sqrt{2} + 1)(4 + 2 \sqrt{6}) }{(4 - 2 \sqrt{6})(4 + 2 \sqrt{6} ) }=(4−26)(4+26)(3−2+1)(4+26)
= \frac{ 4 \sqrt{3} - 4 \sqrt{2} + 4 + 2 \sqrt{18} - 2 \sqrt{12} + 2 \sqrt{6} }{16 -24 }=16−2443−42+4+218−212+26
\frac{4 \sqrt{3} - 4 \sqrt{2} + 4 + 18 \sqrt{2} - 4 \sqrt{3} + 2 \sqrt{6} }{ - 8}−843−42+4+182−43+26
= \frac{14 \sqrt{2} + 2 \sqrt{6} + 4 }{ - 8}=−8142+26+4
Answered by
0
1 / √3−√2+1
1/√3−√2+1 × 1/√3+√2-1/1/√3+√2-1
√3+√2-1 / 3+2+1
√3+√2-1/6
here's your answer
√3+√2-1/6
hope it helps mark me as brainliest
Similar questions