Math, asked by rishika4256, 2 months ago

18) The length, breadth and height of a
cuboid are 15 m, 16m and 5 dm
respectively. The lateral surface area of
the cuboid is
O a) 45 sq m.
O b) 21 sqm
O c) 201 sqm
O d) 90 Sam​

Answers

Answered by mathdude500
2

\begin{gathered}\begin{gathered}\bf \:Given - \begin{cases} &\sf{length_{(cuboid)} = 16 \: m} \\ &\sf{breadth_{(cuboid)} = 15 \: m}\\ &\sf{height_{(cuboid)} =  \: 5 \: dm \:  = 0.5 \: m} \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf \: To\:find - \begin{cases} &\sf{lateral \: surface \: area_{(cuboid)}}  \end{cases}\end{gathered}\end{gathered}

\large\underline\purple{\bold{Solution :-  }}

Given

Dimensions of Cuboid

  • Length of Cuboid, l = 16 m

  • Breadth of Cuboid,b = 15 m

  • Height of Cuboid, h = 0.5 m

Now,

We know that

  • Lateral surface area of Cuboid is given by

\rm \: \boxed{ \pink{ \bf \:CSA_{(cuboid)}  \:  =  \tt \: 2(length + breadth) \times height}}

\rm :\implies\:CSA_{(cuboid)} \:  =  \: 2 \times (16 + 15) \times 0.5

\rm :\implies\:CSA_{(cuboid)} = 31 \times 1

\rm :\implies\: \boxed{ \pink{ \bf \: CSA_{(cuboid)} \:  =  \tt \: 31 \:  {m}^{2} }}

 \underline{ \boxed{ \boxed{ \red{ \bf \: Additional \:  Information:}}}}

Perimeter of rectangle = 2(length× breadth)

Diagonal of rectangle = √(length ²+breadth ²)

Area of square = side²

Perimeter of square = 4× side

Volume of cylinder = πr²h

T.S.A of cylinder = 2πrh + 2πr²

Volume of cone = ⅓ πr²h

C.S.A of cone = πrl

T.S.A of cone = πrl + πr²

Volume of cuboid = l × b × h

C.S.A of cuboid = 2(l + b)h

T.S.A of cuboid = 2(lb + bh + lh)

C.S.A of cube = 4a²

T.S.A of cube = 6a²

Volume of cube = a³

Volume of sphere = 4/3πr³

Surface area of sphere = 4πr²

Volume of hemisphere = ⅔ πr³

C.S.A of hemisphere = 2πr²

T.S.A of hemisphere = 3πr²

Similar questions