Math, asked by uzra9431, 1 month ago


18. Use the factor theorem to determine whether g(x) = x+1 is a factor of p(x) = 2x3 +x2 -2x -1 and verify
p(x)= g(x).q(x)+r(x)
Page 3 / 3
+​

Answers

Answered by ItzBrainlyLords
0

Solution :

Given :

 \\  \large \sf \: g(x) = x + 1 \\ \\   \large \sf \: x =  - 1 \\

 \large \sf p(x) = 2 {x}^{3}  +  {x}^{2}  - 2x - 1 \\  \\  \large \sf \:  \underline{remainder \:  \: theorem : } \\  \\  \large \sf :  \implies \: p( - 1)  \\  \\  \large \tt= 2( { - 1)}^{ 3}  + ( - 1 {)}^{2} - 2( - 1) - 1  \\  \\   \large \tt  =  - 2 + 1 + 2 - 1 \\  \\  \large \tt  =  - 3 + 3 \\  \\  \large \tt  \boxed{ =  0}\\  \\

According to pic 1

 \\  \large \sf \: q(x) = 2 {x}^{2}  + 3x + 1 \\  \\

  • Splitting The Middle Term

 \\  \\  \large \sf \implies \: 2 {x}^{2}  + 3x + 1\\  \\  \large \sf \implies \: 2 {x}^{2}  + 2x + x + 1 \\  \\  \large \sf \implies \: 2x(x + 1) + 1(x + 1)  \\  \\  \large \sf \mapsto \: r(x) = (2x + 1)(x + 1) \\  \\

Attachments:
Similar questions