Math, asked by chauhansid0205, 9 months ago

18. x2 - (√3 + 1)x + √3 = 0​

Answers

Answered by sanikadhapate125
1

Answer:

1

Step-by-step explanation:

x² - (√3 + 1)x + √3 = 0

x² - 2(√3 + 1)(x)/2 + √3 = 0

x² - 2(√3 + 1)x/2 + (√3 + 1)²/2² - (√3 + 1)²/2² + √3 = 0

[x - (√3 + 1)/2]² - (3 + 1 + 2√3)/4 + √3 = 0

[x - (√3 + 1)/2]² = (3 + 1 + 2√3 - 4√3)/4

[x - (√3 + 1)/2]² = (√3 - 1)²/2²

[x - (√3 + 1)/2] = (√3 - 1)/2

taking (+ve)

x = (√3 - 1)/2 + (√3 + 1)/2

x = (√3 - 1 + √3 + 1)/2

x = 2√3/2 = √3

taking (-ve)

x = -(√3 - 1)/2 + (√3 + 1)/2

x = (-√3 + 1 + √3 + 1)/2

x = 2/2 = 1

PLEASE MARK AS BRAINLIEST

Answered by Anonymous
0

We know that,

p(x) =  {x}^{2}  - ( \alpha  +  \beta )x +  \alpha  \beta  \\ where \:  \alpha  \: and \:  \beta  \: are \: the \: zeroes \: of \: p(x)

So here,

 \alpha  +  \beta  =  \sqrt{3}  + 1

 \alpha  \beta  =  \sqrt{3}

Similar questions