182. If tan A = 1 and tan B = 13; evaluate:
(i) cos A cos B - sin A sin B.
(ii) sin A cos B + cos A sin B.
Answers
Answered by
0
Answer:⤵️
(1) -6/√85
(2) 7/√85
Explanation:⤵️
tan A = 1
=> tan A = tan 45°
=> A = 45°
tan B = 13/1
we know that,
tan B = h/b = 13/1
then let,
h= 13x
b= x
then we know that,
p^2 = h^2 + b^2
=> p^2 = 169x^2 + x^2
=> p^2 = 170x^2
=> p = (√170)x
now,
cos A = cos45° = 1/√2
cos B = b/p = x/(√170)x
= 1/√170
sin A = Sin 45° = 1/√2
sin B = h/p = 13x/(√170)x
= 13/√170
NOW,
(1) =>
cosA cosB - sinA sinB
=>cos (A+B)
=(1/√2)(1/√170)-(1/√2)(13/√170)
= -12/√340
= -12/2√85
= -6/√85
(2) =>
sinA cosB + sinB cosA
=> sin(A+B)
=(1/√2)(1/√170)+(13/√170)(1/√2)
= 14/√340
= 14/2√85
= 7/√85
Similar questions