Math, asked by parinitapoojary, 8 months ago

18a^4b^5c^7 divide by 27a^2b^2c^2

Answers

Answered by amankumaraman11
0

Here,

 \large \green{ \bf( {18a}^{4}  {b}^{5}  {c}^{7} )  \gray{\div }( {27a}^{2} {b}^{2}   {c}^{2} )}

Now,

 \to  \:  \: \sf \frac{18 {a}^{4} {b}^{5}   {c}^{7} }{27 {a}^{2}  {b}^{2}  {c}^{2} }  \\  \\ \to \:  \:  \sf  \frac{18 \times  {a}^{4}  \times {b}^{5}    \times {c}^{7} }{ 27 \times  {a}^{2}  \times  {b}^{2}   \times {c}^{2} }  \\  \\  \to \:  \: \sf \frac{18}{27 }  \times  \frac{ {a}^{4} }{ {a}^{2} }  \times   \frac{ {b}^{5} }{ {b}^{2} }  \times  \frac{ {c}^{7} }{ {c}^{2} }  \\  \\  \to  \:  \: \sf \frac{ \cancel9 \times 2}{ \cancel9 \times 3}  \times \frac{ {a}^{4} }{ {a}^{2} }  \times   \frac{ {b}^{5} }{ {b}^{2} }  \times  \frac{ {c}^{7} }{ {c}^{2} }   \\  \\  \to \:  \:  \sf \frac{2}{3}  \times  {a}^{(4 - 2)}  \times  {b}^{(5 - 2)}  \times  {c}^{(7 - 2)}  \\  \\  \to \: \: \sf \frac{2}{3}  \times  {a}^{2}  \times  {b}^{3}  \times  {c}^{5}  \\  \\  \to  \:  \: \sf  \pink{\frac{2 {a}^{2} {b}^{3}  {c}^{5}  }{3} }

Thus,

  • The Quotient is  \boxed{\tt \red{\frac{2 {a}^{2} {b}^{3}  {c}^{5}  }{3} }} .
Similar questions