Math, asked by narasimhulunaidu64, 10 months ago

18th term of the A.p,rout 2 rout 3,2,rout 5,2 .....

Answers

Answered by SarcasticL0ve
8

\implies\sf 35 \sqrt{2}

Given:-

  • AP:- \sf \sqrt{2}, 3 \sqrt{2}, 5 \sqrt{2},.....a_{n}

To find:-

  • 18th term of AP

Solution:-

  • First term (a) = 2

  • Common difference (d) = \sf a_{2} - a_{1} = 3 \sqrt{2} - \sqrt{2} = 2 \sqrt{2}

★ Let's \sf a_{18} be \sf a_{n} term So,

\sf a_{18} = \sqrt{2} + (18 - 1)2 \sqrt{2}

:\implies\sf \sqrt{2} + 17 \times 2 \sqrt{2}

:\implies\sf \sqrt{2} + 34 \sqrt{2}

:\implies{\underline{\underline{\sf{\red{35 \sqrt{2}}}}}}

 \rule{200}{3}

Answered by InfiniteSoul
7

{\huge{\bold{\purple{\bigstar{\boxed{\boxed{\bf{Question}}}}}}}}

Find the 18th term of AP  \sqrt 2 , 2 \sqrt 3 , 2 \sqrt 5 , .........

{\huge{\bold{\purple{\bigstar{\boxed{\boxed{\bf{Solution}}}}}}}}

{\bold{\blue{\boxed{\bf{Given}}}}}

  • first term = a = √2
  • common diff. = d = 2 \sqrt 2
  • no. of times = n = 18

{\bold{\blue{\boxed{\bf{Given}}}}}

 a_{18} = ???

{\bold{\blue{\boxed{\bf{Formulae \: used}}}}}

a_n =a +  (n-1)d

{\bold{\blue{\boxed{\bf{solution}}}}}

 a_{18} =\sqrt 2 + (18 - 1 ) 2\sqrt 2

 a_{18} = \sqrt 2 + 17 \times 2\sqrt 2

 a_{18} =\sqrt 2 + 34 \sqrt 2

 a_{18}= 35 \sqrt 2

{\bold{\blue{\boxed{\boxed{\bf{35\sqrt 2}}}}}}

__________________❤

THANK YOU❤

Similar questions