Math, asked by up390581, 2 months ago

18x-[5x³+3x²-{2x²-(6-2x-x³)-5x³}-3x]​

Answers

Answered by Anonymous
7

Answer:

Given:-

Solve : 18x - [ 5x³ + 3x² - { 2x² - ( 6 - 2x - x³ ) - 5x³ } - 3x ].

To Find:-

The solution of the : 18x - [ 5x³ + 3x² - { 2x² - ( 6 - 2x - x³ ) - 5x³ } - 3x ].

Note:-

Here; we will start adding or subtracting ( if it can be ) from - Small bracket ( ), Next - Curly bracket { }, At Last - Big bracket [ ].

When terms inside the bracket can be calculated then we will open the bracket by multiplying the signs or number outside the bracket terms.

Solution:-

 \huge\red{18x - [ 5x³ + 3x² - { 2x² - ( 6 - 2x - x³ ) - 5x³ } - 3x ]}

 \huge\red{ \ \ \ \ Their \ \ Solution = ?}

According to note first amd second point ( opening small bracket )~

▪︎ 18x - [ 5x³ + 3x² - { 2x² - ( 6 - 2x - x³ ) - 5x³ } - 3x ]

▪︎ 18x - [ 5x³ + 3x² - { 2x² ( - 6 - × - 2x - × -  x³ ) - 5x³ } - 3x ]

Negative × Negative = Positive, Negative × Positive = Negative, Positive × Negative = Negative~

▪︎ 18x - [ 5x³ + 3x² - { 2x² - 6 + 2x + x³ - 5x³ } - 3x ]

▪︎ 18x - [ 5x³ + 3x² - { 2x² - 6 + 2x - 4x³ } - 3x ]

Now, opening the curly bracket~

▪︎ 18x - [ 5x³ + 3x² { - 2x² - × - 6 - × + 2x - × - 4x³ } - 3x ]

▪︎ 18x - [ 5x³ + 3x² - 2x² + 6 - 2x + 4x³ - 3x ]

Taking common terms inside the bracket together~

▪︎ 18x - [ 5x³ + 4x³ + 3x² - 2x² + 6 - 2x - 3x ]

▪︎ 18x - [ 9x³ + x² + 6 - 5x ]

Now, opening the big bracket~

▪︎ 18x [ - 9x³ - × + x² - × + 6 - × - 5x ]

▪︎ 18x - 9x³ - x² - 6 + 5x

▪︎ 18x + 5x - 9x³ - x² - 6

After adding the common term~

▪︎ 23x - 9x³ - x² - 6

 \huge\pink{Their \ \ Solution = 23x - 9x³ - x² - 6}

Answer:-

Hence, The solution of the : 18x - [ 5x³ + 3x² - { 2x² - ( 6 - 2x - x³ ) - 5x³ } - 3x ] = 23x - 9x³ - x² - 6.

:)

Similar questions