Math, asked by Adityakumar1924, 4 months ago

18x²-27x-26 Resolve it into factores​

Answers

Answered by ManalBadam
1

\huge\red{\mathbb{\boxed{step-by-step explanation↓}}}

 {18} \times ^{2} - 27 \times  - 26 = \\ 18 \times  ^{2}  = 32 \\  = 32 - 27 \\  = 5 \\  = 5 \times  (- 26) \\  =  - 21

\huge\pink{\boxed{Answer  - )}}

-21

Answered by aryan073
4

Given :

The given quadratic equation is 18x²-27x-26=0

• a=18

•b=-27

•c=-26

________________________________________

To Find :

• The roots of the quadratic equation =?

________________________________________

Formulas :

•For finding determinant value we use determinant method :

 \red \bigstar \boxed{ \sf{ \delta \: d =  {b}^{2} - 4ac }}

•For finding the roots of the quadratic equation we use formula method :

 \red \bigstar \boxed{ \sf{x =  \frac{ - b \pm \sqrt{ {b}^{2}  - 4ac} }{2a}}}

Solution :

Given, Quadratic equation is 18x²-27x-26=0

Here,

•a=18

•b=-27

•c=-26

By using Factorization method :

 \implies \bf \: 18 {x}^{2}  - 27x - 26 = 0

• Rewrite the polynomial splitting the middle term using the two factors -39 and 12.

  \\ \implies \sf \: 18 {x}^{2}  - 27x - 26 = 0 \\  \\  \implies \sf \: 18 {x}^{2}  - 39x + 12x - 26 = 0 \\  \\  \implies \sf \: 18 {x}^{2}  - 39x + 12x - 26 = 0 \\  \\  \implies \sf \: 3x(6x - 13) + 2(6x - 13) = 0 \\  \\  \implies \sf \: (6x - 13)(3x + 2) = 0 \\  \\  \implies \sf \: 6x = 13 \:  \:  \quad \:  \: 3x =  - 2 \\  \\  \implies \sf \: x =  \frac{13}{6}  \:  \: \quad \: or \:  \:  \:  \: x =  \frac{ - 2}{3}  \\  \\  \implies \boxed{ \sf{x =  \frac{13}{6} }} \:  \quad \sf or \:  \boxed{\sf{x =  \frac{ - 2}{3} }}

The roots of the given quadratic equation is

\\ \blue\bigstar\boxed{\sf{x=\dfrac{13}{6} \: and \: \: x=\dfrac{-2}{3}}}

Similar questions