Math, asked by by599344, 1 year ago

19. Find a point on the x-axis which is equidistant from the points (2,-5) and (-2,9).​

Answers

Answered by snigdhabhamidipati20
1

Answer:

The point on x-axis is (-7,0)

Step-by-step explanation:

A point on x-axis means (x,0)

Let P(x,0) A(2,-5) B(-2,9)

According to question

PA=PB

Using distance formula

PA=\sqrt{ (x_{2}-x_{1})^2+(y_{2}-y_{1})^{2}        

PA=\sqrt{(2-x)^{2}+(-5-0)^{2}

=\sqrt{2^{2}+x^2-4x+25

=\sqrt{4+x^2-4x+25

=\sqrt{x^2-4x+29}........Eq-1

PB=\sqrt{ (x_{2}-x_{1})^2+(y_{2}-y_{1})^{2}

=\sqrt{(-2-x)^2+(9-0)^2

=\sqrt{ (-2)^2+x^2-2(-2)(x)+81

=\sqrt{4+x^2+4x+81

=\sqrt{x^2+4x+85}........Eq-2

PA=PB

\sqrt{x^2-4x+29}=\sqrt{x^2+4x+85}

Simplifying it

{x^2-4x+29}={x^2+4x+85}

x^2-x^{2} -4x-4x+29-85=0

-8x-56=0\\-8x=56\\x=56/-8\\x=-7

∴The point on x-axis is (-7,0)

Thank you

Similar questions