Math, asked by gautamprajapati490, 1 year ago

19. Find a quadratic polynomial for which the sum and the product of zeroes

5 and3/4 respectively.

Answers

Answered by ItSdHrUvSiNgH
1

Step-by-step explanation:

\huge\underline{\underline{\sf ANSWER}} \\  \huge \: hey.... \\

let \:  \alpha  \: and  \:  \beta  \: be \: two \: zeros...

 \alpha  +  \beta  = 5 \\  \alpha  \beta  =  \frac{3}{4}

  • Remember...

If sum and product of zeros are given quadratic equation is given as =>

 {x}^{2}  - ( \alpha  +  \beta )x +  \alpha  \beta  = 0

So applying same formula in upper condition.....

 {x}^{2}  - ( \alpha  +  \beta )x +  \alpha  \beta  = 0 \\  {x}^{2}  - 5x +  \frac{3}{4}  = 0 \\ (multiplying \: by \: 4 \: on \: both \: sides) \\ 4 {x}^{2}  - 20x + 3 = 0 \\

Answered by physicsking60
0

Step-by-step explanation:

let a,b are the roots of a given quadratic equation

then,

quadratic equation=k(x2-(a+b)x+ab)=0

x2-5x+3/4=0

4x2-20x+3=0

Similar questions