19) If a+b, a-b are the zeroes of the
polynomial x^2 +2x + 1 then the
values of a = .................
„b =.....................
(1 Point)
Answers
Answered by
0
Answer:
ejcenc2h2ckwcecience kekcwbcwxwx2ff2 f cwjcwcn9cw
bjj
Answered by
0
Answer:
We are given that a polynomial
x^2+x+1x
2
+x+1
Two zeroes of polynomial are \alpha,\betaα,β .
We have to find the value of
\frac{1}{\alpha}+\frac{1}{\beta}
α
1
+
β
1
\frac{1}{\alpha}+\frac{1}{\beta}=\frac{\beta+\alpha}{\alpha\beta}
α
1
+
β
1
=
αβ
β+α
General quadratic polynomial
x^2-(\alpha+\beta)x+\alpha\cdot \betax
2
−(α+β)x+α⋅β
Compare with given equation
\alpha+\beta=-1α+β=−1
\alpha\cdot \beta=1α⋅β=1
Substitute the values then we get
\frac{1}{\alpha}+\frac{1}{\beta}=\frac{-1}{1}=-1
α
1
+
β
1
=
1
−1
=−1
Hence, \frac{1}{\alpha}+\frac{1}{\beta}==-1
α
1
+
β
1
==−1
Step-by-step explanation:
heres your answer
Similar questions