Math, asked by agrawalmanas28, 5 months ago

19. If two vertices of a square are (5, 4) and (1-6), then find the coordinates
of its remaining two vertices.
20. The vertices of a AABC are A(5.5) B(15) and C19.1). A line is drawn to​

Answers

Answered by Anonymous
5

Answer:

ANSWER

Solution−

ABCDisasquare.

SoAB=BC=CD=DA&thediagonalsAC=BD..........(i).

Weshallapplydistanceformulatogettheabovelengths.

d=

(x

1

−x

2

)

2

+(y

1

−y

2

)

2

.

NowΔABCisarightonewithACashypotenuse(∠ABC=90

o

).

∴AC=

(5−1)

2

+(4+6)

2

units=

116

units=BD(byi)........(ii).

Weknowthatsideofasquare=

2

diagonal

.

∴AB=BC=CD=DA=

2

116

units=

58

units.........(iii).

Now,usingthedistanceformulad=

(x

1

−x

2

)

2

+(y

1

−y

2

)

2

,

AB

2

=BC

2

⟹(x

1

−5)

2

+(y

1

−4)

2

=(x

1

−1)

2

+(y

1

+6)

2

⟹8x

1

+20y

1

−4=0

⟹2x

1

+5y

1

−1=0

⟹y=

5

1−2x

1

........(iv).

∴AB

2

+BC

2

=AC

2

⟹(x

1

−5)

2

+(y

1

−4)

2

+58=116(fromii&iii)

⟹(x

1

−5)

2

+(y

1

−4)

2

=58

⟹(x

1

−5)

2

+(

5

1−2x

1

−4)

2

=58

⟹29x

1

2

−174x

1

−464=0

⟹x

1

2

−6x

1

−16=0

⟹(x

1

−8)(x

1

+2)=0

⟹x

1

=(8,−2).

So,from(iv),

y

1

=(

5

1−2×8

,

5

1−2(−2)

)=(−3,1).

∴B(x

1

,y

1

)=(8,−3)and(−2,1).

SimilarlyAD

2

=DC

2

⟹(x

2

−5)

2

+(y

2

−4)

2

=(x

2

−1)

2

+(y

2

+6)

2

⟹8x

2

+20y

2

−4=0

⟹2x

2

+5y

2

−1=0

⟹y

2

=

5

1−2x

2

........(iv).

∴AD

2

+DC

2

=AC

2

⟹(x

2

−5)

2

+(y

2

−4)

2

+58=116(fromii&iii)

⟹(x

2

−5)

2

+(y

2

−4)

2

=58

⟹(x

2

−5)

2

+(

5

1−2x

2

−4)

2

=58

⟹29x

2

2

−174x

2

−464=0

⟹x

2

2

−6x

2

−16=0

⟹(x

2

−8)(x

2

+2)=0

⟹x

2

=(8,−2).

So,from(iv),

y

2

=(

5

1−2×8

,

5

1−2(−2)

)=(−3,1).

∴D(x

2

,y

2

)=(8,−3)and(−2,1).

Sothecoordinatesofothertwoverticesare

(8,−3)and(−2,1).

ans−

Attachments:
Similar questions