Math, asked by rushi8611, 11 months ago


19. If (x - 2) is a factor of x4 - 16 then find the remainder.

Answers

Answered by Anonymous
3

If it is factor then remainder toh 0 hi aaega....

Attachments:
Answered by mysticd
1

Answer:

 \red { Required \: remainder }

\green {= x^{3} + 2x^{2} + 4x + 8}

Step-by-step explanation:

 Given \: (x-2) \:is \: a \: factor \: of \: x^{4} - 16

 Remainder = \frac{x^{4} - 16 }{(x-2)}\\= \frac{(x^{2})^{2} - 4^{2}}{(x-2)} \\= \frac{(x^{2}+4)(x^{2}-4)}{(x-2)}

 = \frac{(x^{2}+4)(x^{2} - 2^{2})}{(x-2)}\\= \frac{(x^{2}+4)(x+2)(x-2)}{(x-2)}\\= (x^{2}+4)(x+2) \\= x^{3} + 2x^{2} + 4x + 8

Therefore.,

 \red { Required \: remainder }

\green {= x^{3} + 2x^{2} + 4x + 8}

•••♪

Similar questions