Math, asked by zoedeannesaldanha48, 9 months ago

19. If x = 43, y = - 61, z = 18, find the value of
(x + y)2 (y +z)2 (z + x)2
xy YZ zx​

Answers

Answered by Agastya0606
0

Given: The values of x = 43, y = - 61, z = 18,   The correct term is

(x + y)^2/xy + (y +z)^2/yz + (z + x)^2/zx

To find: The value of  (x + y)^2/xy + (y +z)^2/yz + (z + x)^2/zx

Solution:

  • Now we have given the values x = 43, y = - 61, z = 18
  • So putting these values in (x + y)^2/xy + (y +z)^2/yz + (z + x)^2/zx, we get:

              (43 - 61)^2/(43 x -61) + (-61 + 18)^2/(-61 x 18) + (43 + 18)^2/(43 x 18)

              ((-18)^2 / -2623 ) + ((-43)^2 / 1098 ) + ((61)^2 / 774 )

              324 /  -2623 + 1849 / 1098 + 3721 / 774

              -0.1235 + 1.6839 + 4.8074

              6.3678

Answer:

        So the value of  (x + y)^2/xy + (y +z)^2/yz + (z + x)^2/zx is 6.3678

Similar questions