19. If x = 43, y = - 61, z = 18, find the value of
(x + y)2 (y +z)2 (z + x)2
xy YZ zx
Answers
Answered by
0
Given: The values of x = 43, y = - 61, z = 18, The correct term is
(x + y)^2/xy + (y +z)^2/yz + (z + x)^2/zx
To find: The value of (x + y)^2/xy + (y +z)^2/yz + (z + x)^2/zx
Solution:
- Now we have given the values x = 43, y = - 61, z = 18
- So putting these values in (x + y)^2/xy + (y +z)^2/yz + (z + x)^2/zx, we get:
(43 - 61)^2/(43 x -61) + (-61 + 18)^2/(-61 x 18) + (43 + 18)^2/(43 x 18)
((-18)^2 / -2623 ) + ((-43)^2 / 1098 ) + ((61)^2 / 774 )
324 / -2623 + 1849 / 1098 + 3721 / 774
-0.1235 + 1.6839 + 4.8074
6.3678
Answer:
So the value of (x + y)^2/xy + (y +z)^2/yz + (z + x)^2/zx is 6.3678
Similar questions
English,
5 months ago
Social Sciences,
5 months ago
Math,
9 months ago
Math,
9 months ago
Biology,
1 year ago