Math, asked by Anonymous, 16 days ago

19. In a AABC, ZA = 25, B = 350 and AB = 16 units. In APQR, P = 35°, ZQ = 120
°= =
PR = 4 units. Then, ar(AABC) =
fo) Zor APQR) (b) 4ar APQR)
(c) Bar(APQR) (d) 16ar(APQR)

Answers

Answered by xXNIHASRAJGONEXx
1

Answer:

(i) ∠PRB=∠BAP=35

o

(Angles in the same segment of the circle)

(ii) ∠BPA=90

o

(angle in a semicircle)

∴∠BPQ=90

o

∴∠PBR=∠BQP+∠BPQ=25

o

+90

o

=115

o

(exterior angle in △BPQ)

(iii) ∠ABP=90

o

−∠BAP=90

o

−35

o

=55

o

∴∠ABR=∠PBR=∠ABP=115

o

−55

o

=60

o

∴∠APR=∠ABR=60

o

(Angle in the same segment of circle)

Hence, ∠BPR=90

o

−∠APR=90

o

−60

o

=30

o

please drop some ❤️❤️❤️

Step-by-step explanation:

please f-o-l-l-o-w m-e bro please

Answered by Anonymous
33

\huge\colorbox{white}{ \colorbox{white}{\colorbox{white}{Correct\:Question}}}

In a AABC, \angleA = 25°, \angle B = 35°and AB = 16 units. In ∆PQR, \angleP = 35°, \angleQ = 120° & PR = 4 units. Then, ar(∆ABC) =

(i) 2 ar(∆PQR)

(ii) 4ar (∆PQR)

(iii) 8ar (∆PQR)

(iv) 16ar (∆PQR)

\huge\colorbox{white}{ \colorbox{white}{\colorbox{white}{Answer}}}

Given :

  •  \tt \:\color{green} {In ∆ABC ,}

\rightarrow ZA = 25

\rightarrow B = 350

\rightarrow AB = 16 units

  •  \tt \: \color{green}{In ∆PQR}

\rightarrow P = 35°

\rightarrow ZQ = 120

\rightarrow PR = 4 units

To Find :-

  •  \tt \: \color{green}{ar (∆ABC = ? )}

Solution :-

\rightarrow  \tt \: \color{green}{In ∆ABC and ∆PQR}

\rightarrow  \tt \: \angle A = \angle R = 25°

\rightarrow  \tt \: \angle{B} = \angle{P} = 35°

\therefore  \tt \: ∆ABC ~ ∆RPQ....[ By AA  similarity]

 \color{green} {So,}

\sf\huge\implies\frac{ar(∆ABC)}{ar(RPQ)}

\sf\huge\implies \frac{AB²}{PR²}

\sf\huge\implies \frac{16²}{4²}

\sf\huge\implies \frac{256}{16}

\sf\huge\implies \frac{16}{1}

\sf\huge\implies  \tt \: ar(∆ABC) = 16 ar (∆PQR)

 \color{Red} {Hence,\: Correct\:Answer\:is \: option\: (d)}

Attachments:
Similar questions