19. In a AABC, ZA = 25, B = 350 and AB = 16 units. In APQR, P = 35°, ZQ = 120
°= =
PR = 4 units. Then, ar(AABC) =
fo) Zor APQR) (b) 4ar APQR)
(c) Bar(APQR) (d) 16ar(APQR)
Answers
Answer:
(i) ∠PRB=∠BAP=35
o
(Angles in the same segment of the circle)
(ii) ∠BPA=90
o
(angle in a semicircle)
∴∠BPQ=90
o
∴∠PBR=∠BQP+∠BPQ=25
o
+90
o
=115
o
(exterior angle in △BPQ)
(iii) ∠ABP=90
o
−∠BAP=90
o
−35
o
=55
o
∴∠ABR=∠PBR=∠ABP=115
o
−55
o
=60
o
∴∠APR=∠ABR=60
o
(Angle in the same segment of circle)
Hence, ∠BPR=90
o
−∠APR=90
o
−60
o
=30
o
please drop some ❤️❤️❤️
Step-by-step explanation:
please f-o-l-l-o-w m-e bro please
In a AABC, A = 25°, B = 35°and AB = 16 units. In ∆PQR, P = 35°, Q = 120° & PR = 4 units. Then, ar(∆ABC) =
(i) 2 ar(∆PQR)
(ii) 4ar (∆PQR)
(iii) 8ar (∆PQR)
(iv) 16ar (∆PQR)
Given :
ZA = 25
B = 350
AB = 16 units
P = 35°
ZQ = 120
PR = 4 units
To Find :-
Solution :-