Math, asked by mahaboobkhanus4, 10 months ago

19. In A.P sum of the first 10
term is 155 and sum of the first
20 term is 610 then find the
sum of 11th to 20th term. *​

Answers

Answered by shashank3537
0

Step-by-step explanation:

we get s20= 610

so our ans is correct

Attachments:
Answered by AaronNoronha
1

Answer: Sum of 11th to 20th term is 423

Step-by-step explanation

a = ?, d= ?,  S_{10} = 155,  S_{20} = 610

S_{n} = \frac{n}{2}*(2a + (n-1)d)

S_{10} = 10/2 (2a + (10-1)d)

155 = 10/2 (2a+9d)

310 = 20a +90d -- (1)

S_{n} = \frac{n}{2}*(2a + (n-1)d)

S_{20} = 20/2 (2a + (20-1)d)

610 = 20/2 (2a + 19d)

1220 = 40a + 380d --(2)

          20a + 90d = 310 --(1) x2

         40a + 380d = 1220 --(2) x1

        ------------------------------

         40a + 180d = 620

         40a + 380d = 1220

         -----------------------------

         -       -               -

         -----------------------------

                  -200d = -600

                         d  =  3

20a + 90d = 310

20a   + 90x3 = 310

20a + 270 = 310

     20a      = 310 - 270

      20a      =     40

         a         =    2

To find sum of 11th to 20th term

S_{n} = \frac{n}{2}*(2a + (n-1)d)

S_{11} = 11/2 ( 2a + (11-1)d)

S_{11} =  11/2 (2x2 + 10x3)

S_{11} =    11/2 ( 4 + 30)

S_{11} =   11/2 x 34

S_{11} =   187

Sum of 11th to 20th term =   S_{20} -  S_{11}

                                           = 610 - 187

                                           =  423

Hope this helps!!

Cheers!!

Similar questions