19) In a quadrilateral three angles are in the ratio 3 : 3:1 & one of the
angle is 80",then find the other angles.
Answers
⛦Given,
ratio is 3:3:1 and fourth angle is 80°.
Sum of all the angles of the quadrilateral is 360°.
Let the ratio numbers be:
⟼3x, 3x and 1x
⟼3x + 3x + 1x + 80° = 360°
⟼7x + 80° = 360°
⟼7x = 360° - 80°
⟼7x = 280°
3x = 3 / 7 x 280°
= 3 x 40
= 120°
3x = 3 / 7 x 280°
= 3 x 40
= 120°
1x = 1 / 7 x 280°
= 1 x 40
= 40°
- ↬Therefore, the four angles are 120°, 120°, 40° and 80°.
Answer:
- ∠ A = 120 °
- ∠ B = 120 °
- ∠ C = 40 °
- ∠ D = 80 °
Explanation:
Given:
- A quadrilateral in which:
- Ratio of three angles = 3 : 3 : 1
- Measure of 4th angle = 80 °
To find:
The measure of the other three angles.
Proof:
P.F.A the figure below for reference.
Let the given quadrilateral be ABCD.
According to the question, Let:
- ∠ A = 3x
- ∠ B = 3x
- ∠ C = x
- ∠ D = 80 °
Now,
∠ A + ∠ B + ∠ C + ∠ D = 360 °
[ Sum of the interior angles of a quadrilateral = 360 ° ]
Substituting the values of ∠A, ∠B, ∠C, & ∠D, we get:
= 3x + 3x + x + 80 ° = 360 °
⇒ 7x + 80 ° = 360 °
⇒ 7x = (360 - 80) °
⇒ 7x = 280 °
⇒ x = () °
⇒ x = 40 °
Substituting the value of x in ∠A, ∠B, ∠C we get:
- ∠ A = 3(40) = 120 °
- ∠ B = 3(40) = 120 °
- ∠ C = x = 40 °
Hence,
- ∠ A = 120 °
- ∠ B = 120 °
- ∠ C = 40 °
- ∠ D = 80 ° [Given]
Proved.
Hope you got that.,
Thank You.