19. In a right ABC, angle B=90° AC-BC=2. AB= 4√2. Then sec A+cotc?
Answers
the question,
We have a right angled triangle ABC at B.
AC = 2√5
AB - BC = 2
We need to find the value of,
cos²A - cos²C
So,
We can say,
AB = x + 2
BC = x
In the triangle using Pythagoras Theorem,
AC² = AB² + BC²
So,
\begin{gathered}(2\sqrt{5})^{2}=(x+2)^{2}+(x)^{2}\\20=2x^{2}+4+4x\\2x^{2}+4x=16\\x^{2}+2x-8=0\\(x+4)(x-2)=0\\x=-4,2\end{gathered}
(2
5
)
2
=(x+2)
2
+(x)
2
20=2x
2
+4+4x
2x
2
+4x=16
x
2
+2x−8=0
(x+4)(x−2)=0
x=−4,2
So,
x = 2
Now,
AB = 4
and,
BC = 2
So,
\begin{gathered}cos^{2}A=(\frac{4}{2\sqrt{5}})^{2}\\cos^{2}A=\frac{4}{5}\end{gathered}
cos
2
A=(
2
5
4
)
2
cos
2
A=
5
4
also.\begin{gathered}cos^{2}C=(\frac{2}{2\sqrt{5}})^{2}\\cos^{2}C=\frac{1}{5}\end{gathered}
cos
2
C=(
2
5
2
)
2
cos
2
C=
5
1
So,\begin{gathered}cos^{2}A-cos^{2}C=\frac{4}{5}-\frac{1}{5}\\cos^{2}A-cos^{2}C=\frac{3}{5}\end{gathered}
cos
2
A−cos
2
C=
5
4
−
5
1
cos
2
A−cos
2
C=
5
3
Therefore, the required value is,
\frac{3}{5}
5
3