Math, asked by ayush6349, 7 months ago

19. In fig. OA = OB and OD = 0C. Show that A AOD SA BOC

Answers

Answered by itzsecretagent
113

\underline{\underline{\maltese\: \: \textbf{\textsf{Correct Question: -  }}}}

In the figure OA = OB and OD = OC Show that

(a) △AOD ≅△BOC

(b) AD || BC

\underline{\underline{\maltese\: \: \textbf{\textsf{Answer : - }}}}

In△AOD&△BCO

 \sf \longrightarrow \: OD=OC \:  (given) \\  \\  \sf \: OA=OB \: (given) \\  \\  \sf \: ∠AOD=∠COB (vertically opposite) \\  \\ \sf \longrightarrow \red{△AOD≅△BOC}

∠OAD=∠OBC -----------------(angles corresponding to congruent sides)

[∵ AD & BC make equal angles with the same line AB]

 \sf \therefore \: Hence \:  \red{AD∣∣BC}

Attachments:
Similar questions